• 제목/요약/키워드: Jang Heung Lim's

검색결과 11건 처리시간 0.014초

조식동물 탐지 및 모니터링을 위한 딥러닝 기반 객체 탐지 모델의 강인성 평가 (Evaluation of Robustness of Deep Learning-Based Object Detection Models for Invertebrate Grazers Detection and Monitoring)

  • 박수호;김흥민;김탁영;임재영;장선웅
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.297-309
    • /
    • 2023
  • 최근 조식동물로 인한 갯녹음 현상으로 인해 연안 생태계 및 어장환경의 황폐화가 가속화되고 있다. 이러한 갯녹음 현상을 모니터링하고 방지대책을 세우기 위해서는 광범위한 해역에 대한 원격탐사 기반의 모니터링 기술 도입이 필요하다. 본 연구에서는 수중에서 촬영된 동영상으로부터 조식동물을 탐지하고 모니터링하기 위한 딥러닝 기반 객체 탐지 모델의 강인성(robustness)을 비교 분석하였다. 우리나라 연안의 대표적인 조식동물 7종을 대상으로 이미지 데이터셋을 구축하였으며, 이를 활용하여 딥러닝 기반 객체 탐지 모델인 You Only Look Once (YOLO)v7과 YOLOv8을 훈련시켰다. 총 6개의 YOLO 모델(YOLOv7, YOLOv7x, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x)에 대해 탐지 성능과 탐지 속도를 평가하였으며, 수중환경에서 촬영 시 발생할 수 있는 다양한 이미지 왜곡에 대해서 강인성 평가를 실시하였다. 평가결과 YOLOv8 계열 모델이 파라미터(parameter) 수 대비 더 높은 탐지 속도(약 71-141 FPS [frame per second])를 보였다. 탐지 성능에 있어서도 YOLOv8 계열 모델(mean average precision [mAP] 0.848-0.882)이 YOLOv7 계열 모델(mAP 0.847-0.850)에 비해 더 높은 성능을 보이는 것을 확인하였다. 모델의 강인함에 있어서 형태 왜곡에 대해서는 YOLOv7 계열 모델이 YOLOv8 계열 모델에 비해 강인한 것을 확인하였으며, 색상 왜곡에 대해서는 YOLOv8 계열 모델이 상대적으로 강인한 것을 확인 하였다. 따라서 실해역에서 수중 영상 촬영 시, 형태 왜곡은 발생 빈도가 낮으며 색상 왜곡은 연안에서 빈번하게 발생한다는 점을 고려했을 때, 연안해역에서 조식동물 탐지와 모니터링을 위해서는 YOLOv8 계열 모델을 활용하는 것이 타당한 것으로 판단된다.