• 제목/요약/키워드: Jak

Search Result 232, Processing Time 0.023 seconds

Regulation of mitochondrial morphology and metabolism by Jak-STAT pathway

  • Rhee, Kun Do
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.189-193
    • /
    • 2021
  • Jak-STAT pathway is required for embryogenesis, female gametogenesis, cytokine-mediated neuroprotection, diabetes, obesity, cancer, stem cell, and various tissues. The noncanonical role of Jak-STAT in mitochondria function was supported by the detection of STAT protein in mitochondria, however, several studies show that STAT protein is detected in the endoplasmic reticulum (ER), and not in mitochondria. STAT protein may alter mitochondria function without entering mitochondria, this involves regulation of fission and fusion proteins to change mitochondria morphology. However, how changes in mitochondria morphology lead to changes in mitochondria metabolism needs further investigation.

JAK/STAT Pathway Modulates on Porphyromonas gingivalis Lipopolysaccharide- and Nicotine-Induced Inflammation in Osteoblasts (조골세포에서 Porphyromonas gingivalis Lipopolysaccharide와 니코틴에 의한 염증에 대한 JAK/STAT Pathway의 역할)

  • Han, Yang-keum;Lee, In Soo;Lee, Sang-im
    • Journal of dental hygiene science
    • /
    • v.17 no.1
    • /
    • pp.81-86
    • /
    • 2017
  • Bacterial infection and smoking are an important risk factors involved in the development and progression of periodontitis. However, the signaling mechanism underlying the host immune response is not fully understood in periodontal lesions. In this study, we determined the expression of janus kinase (JAK)/signal transducer and activator of transcription (STAT) on Porphyromonas gingivalis lipopolysaccharide (LPS)- and nicotine-induced cytotoxicity and the production of inflammatory mediators, using osteoblasts. The cells were cultured with 5 mM nicotine in the presence of $1{\mu}g/ml$ LPS. Cell viability was determined using MTT assay. The role of JAK on inflammatory mediator expression and production, and the regulatory mechanisms involved were assessed via enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blot analysis. LPS- and nicotine synergistically induced the production of cyclooxgenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) and increased the protein expression of JAK/STAT. Treatment with an JAK inhibitor blocked the production of COX-2 and $PGE_2$ as well as the expression of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$ ($IL-1{\beta}$), and IL-6 in LPS- and nicotine-stimulated osteoblasts. These results suggest that JAK/STAT is closely related to the LPS- and nicotine-induced inflammatory effects and is likely to regulate the immune response in periodontal disease associated with dental plaque and smoking.

STING Negatively Regulates Double-Stranded DNA-Activated JAK1-STAT1 Signaling via SHP-1/2 in B Cells

  • Dong, Guanjun;You, Ming;Ding, Liang;Fan, Hongye;Liu, Fei;Ren, Deshan;Hou, Yayi
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.441-451
    • /
    • 2015
  • Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders.

Interferon Apha 2b for Treating Patients with JAK2V617F Positive Polycythemia Vera and Essential Thrombocytosis

  • Zhang, Zhi-Rong;Duan, Yan-Chao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1681-1684
    • /
    • 2014
  • Objective: To investigate interferon (IFN) alpha 2 b for treating patients with JAK2V617F positive polycythemia vera (PV) and essential thrombocytosis (ET). Methods: Interferon alpha 2 b was used to treat patients with JAK2V617F positive PV and ET. In control group, hydroxyurea was used. Endpoint of study was to compare rates of hematological and molecular remission. Results: Patients in the interferon alpha 2 b group achieved higher rates of hematologic and molecular remission than patients in the hydroxyurea group, with a lower incidence of thrombosis. Conclusion: Compared with hydroxyurea, interferon alpha 2 b could reduce JAK2V617F load for patients with PV and ET, and achieve higher molecular remission, improve treatment efficacy and reduce complications.

The Role of Jak/STAT Pathways in Osteoclast Differentiation

  • Lee, Young-Kyun;Kim, Hong-Hee
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • Osteoclasts are bone-resorbing cells of monocyte/macrophage origin and are culprits of bone destruction associated with osteoporosis, rheumatoid arthritis, and cancer bone metastasis. Recent advances in osteoclast biology revealed central roles of various cytokines in regulating osteoclastogenesis both in vitro and in vivo. However, exact underlying mechanisms including signaling pathways downstream of receptor ligation are still under pursuit. In the present review, the role of Jak/STAT proteins and their regulators will be discussed in connection with osteoclastogenesis, since growing evidence indicates that a number of cytokines and growth factors utilizing Jak/STAT signaling pathways affect osteoclastogenesis. A better understanding on the role of Jak/STAT pathways in osteoclast differentiation will not only strengthen our knowledge on osteoclast biology but also provide invaluable insights into the development of anti-resorptive strategies for treating bone-lytic diseases.

A Case of Pulmonary Thromboembolism with JAK2 Mutation (JAK2 돌연변이를 동반한 폐색전증 1예)

  • Kim, Jin-Jin;Kwon, Soon-Seog;Lee, Hyun-Jeong;Lee, Hea-Yon;Jeong, Myung-Hee;Kim, Yong-Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.4
    • /
    • pp.351-355
    • /
    • 2009
  • The incidence of pulmonary thromboembolism increases with age. The risk factors of pulmonary thromboembolism include surgery, malignancy, obesity, lupus anticoagulants, and vascular conditions such as deep vein thrombosis. Thromboembolism in younger patients or in unusual locations, the possibility of primary thrombophilic conditions should be considered. Primary thrombophilic states include myeloproliferative disorders (MPD). JAK2 V617F mutation is found commonly in patients diagnosed with MPD, in 90~95% of polycythemia vera (PV) and in 50~60% of essential thrombocytosis (ET) patients. Sometimes the JAK2 V617F mutation is found in cases without MPD. The relationship between JAK2 V617F mutation and thrombosis has not been defined. Recently, clinical evidence suggests that this mutation may be variably associated with thrombosis. We present one case of pulmonary thromboembolism in a young patient, who was positive for the JAK2 V617F mutation and did not have MPD.

Procaine Attenuates Pain Behaviors of Neuropathic Pain Model Rats Possibly via Inhibiting JAK2/STAT3

  • Li, Donghua;Yan, Yurong;Yu, Lingzhi;Duan, Yong
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2016
  • Neuropathic pain (NPP) is the main culprit among chronic pains affecting the normal life of patients. Procaine is a frequently-used local anesthesia with multiple efficacies in various diseases. However, its role in modulating NPP has not been reported yet. This study aims at uncovering the role of procaine in NPP. Rats were pretreated with procaine by intrathecal injection. Then NPP rat model was induced by sciatic nerve chronic compression injury (CCI) and behavior tests were performed to analyze the pain behaviors upon mechanical, thermal and cold stimulations. Spinal expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was detected by qRT-PCR and western blot. JAK2 was also overexpressed in procaine treated model rats for behavior tests. Results showed that procaine pretreatment improved the pain behaviors of model rats upon mechanical, thermal and cold stimulations, with the best effect occurring on the $15^{th}$ day post model construction (p<0.05). Procaine also inhibited JAK2 and STAT3 expression in both mRNA (p<0.05) and protein levels. Overexpression of JAK2 increased STAT3 level and reversed the improvement effects of procaine in pain behaviors (p<0.01). These findings indicate that procaine is capable of attenuating NPP, suggesting procaine is a potential therapeutic strategy for treating NPP. Its role may be associated with the inhibition on JAK2/STAT3 signaling.

Licochalcone H Induces Cell Cycle Arrest and Apoptosis in Human Skin Cancer Cells by Modulating JAK2/STAT3 Signaling

  • Park, Kyung-Ho;Joo, Sang Hoon;Seo, Ji-Hye;Kim, Jumi;Yoon, Goo;Jeon, Young-Joo;Lee, Mee-Hyun;Chae, Jung-Il;Kim, Woo-Keun;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.72-79
    • /
    • 2022
  • Licochalcone H (LCH) is a phenolic compound synthetically derived from licochalcone C (LCC) that exerts anticancer activity. In this study, we investigated the anticancer activity of LCH in human skin cancer A375 and A431 cells. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay was used to evaluate the antiproliferative activity of LCH. Cell cycle distribution and the induction of apoptosis were analyzed by flow cytometry. Western blotting assays were performed to detect the levels of proteins involved in cell cycle progression, apoptosis, and the JAK2/STAT3 signaling pathway. LCH inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay revealed that LCH induced apoptosis, and the LCH-induced apoptosis was accompanied by cell cycle arrest in the G1 phase. Western blot analysis showed that the phosphorylation of JAK2 and STAT3 was decreased by treatment with LCH. The inhibition of the JAK2/STAT3 signaling pathway by pharmacological inhibitors against JAK2/STAT3 (cryptotanshinone (CTS) and S3I-201) simulated the antiproliferative effect of LCH suggesting that LCH induced apoptosis by modulating JAK2/STAT3 signaling.

Anti-inflammatory Effect of Morinda citrifolia on LPS-induced Inflammation in RAW 264.7 Cells Through the JAK/STAT Signaling Pathway (JAK/STAT 신호전달 경로를 통한 LPS 유도 RAW 264.7 세포의 염증에 대한 노니의 항염증 효과)

  • Jo, Beom Gil;Bang, In Seok
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • This study investigated whether or not the major bioactive compounds of Noni (Morinda citrifolia) are involved in anti-inflammatory activity through the JAK/STAT upper signaling pathway in RAW 264.7 cells. The experimental results show that the M. citrifolia ethyl acetate fraction (Mc-EtOAc) obtained by sequential fractionation with organic solvents from the plant's dried fruits exhibits the highest antioxidant activity. In addition, the cytoprotective effects of Mc-EtOAc against H2O2-induced oxidative stress in the RAW 264.7 cells suppressed cytotoxicity in a dose-dependent manner. The group pretreated with Mc-EtOAc at a concentration of 240 ㎍/ml showed higher cell viability of 84.5%, compared to 71.6% in the LPS-treated group, and LPS-induced NO production decreased to half the amount in the positive control group. Mc-EtOAc treatment also led to a significant dose-dependent reduction in iNOS expression. Although COX-2 expression was increased by 300% following LPS induction, it was significantly decreased in a dose-dependent manner by pretreatment with Mc-EtOAc at concentrations of 120 and 240 ㎍/ml. An inhibition of the mRNA expression of pro-inflammatory cytokines IL-1β and TNF-α was observed. The investigation also revealed that the phosphorylation levels of pJAK1 and pSTAT3 in LPS-induced RAW 264.7 cells were significantly reduced by Mc-EtOAc treatment.

Effect of Bee Venom Death Receptor Dependent Apoptosis and JAK2/STAT3 Pathway in the Ovarian Cancer (난소암에서 봉독이 세포자멸사와 JAK2/STAT3 Pathway의 억제에 미치는 영향)

  • Ahn, Byeong-Joon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.29 no.1
    • /
    • pp.47-59
    • /
    • 2012
  • 목적 : 이 연구는 봉독이 사람의 난소암 세포인 SKOV3와 PA-1에서 death receptor의 발현을 높여 세포자멸사를 촉진함으로써 암세포의 성장을 억제하는지 밝히고자 하였다. 방법 : 난소암의 세포자멸사의 관찰에는 DAPI, TUNEL staining assay를 시행하였으며, 세포자멸사 조절 단백질의 변동 관찰에는 western blot analysis를 시행하였고, 난소암 세포에서 death receptor의 변화를 관찰하기 위해 RT-PCR analysis를 시행하였다. 결과 : 1. DAPI, TUNEL staining assay 결과, 봉독은 투여량에 따라 세포자멸사의 유도를 통해 SKOV3와 PA-1 난소암세포의 증식을 억제하였고, 세포자멸사와 동반하여 DR4와 DR6의 발현이 두 암세포 모두에서 증가하였고, DR3의 출현은 PA-1 세포에서 증가하였다. 2. Death Receptor의 발현 증가에 따라 caspase-3, 8, 9 and Bax를 포함하는 세포자멸사 촉진 단백질의 발현이 동반하여 상승하였고 JAK2, STAT3의 인산화와 Bcl-2의 발현은 억제되었다. 3. siRNA 처리 시 봉독에 의한 DR3, DR4, DR6 발현증가와 STAT3의 활성억제가 역전되었다. 결론 : 이러한 결과는 봉독이 난소암 세포에서 DR3, DR4, DR6의 증가와 JAK2/STAT3 pathway의 억제를 통하여 세포자멸사를 유발한다는 것을 시사하며, 난소암의 예방과 치료에 효과적으로 활용될 수 있을 것으로 기대된다.