• Title/Summary/Keyword: Jacobson radical

Search Result 79, Processing Time 0.02 seconds

TORSION THEORY, CO-COHEN-MACAULAY AND LOCAL HOMOLOGY

  • Bujan-Zadeh, Mohamad Hosin;Rasoulyar, S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.577-587
    • /
    • 2002
  • Let A be a commutative ring and M an Artinian .A-module. Let $\sigma$ be a torsion radical functor and (T, F) it's corresponding partition of Spec(A) In [1] the concept of Cohen-Macauly modules was generalized . In this paper we shall define $\sigma$-co-Cohen-Macaulay (abbr. $\sigma$-co-CM). Indeed this is one of the aims of this paper, we obtain some satisfactory properties of such modules. An-other aim of this paper is to generalize the concept of cograde by using the left derived functor $U^{\alpha}$$_{I}$(-) of the $\alpha$-adic completion functor, where a is contained in Jacobson radical of A.A.

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

ON RIGHT REGULARITY OF COMMUTATORS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Park, Sangwon;Ryu, Sung Ju;Sung, Hyo Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.853-868
    • /
    • 2022
  • We study the structure of right regular commutators, and call a ring R strongly C-regular if ab - ba ∈ (ab - ba)2R for any a, b ∈ R. We first prove that a noncommutative strongly C-regular domain is a division algebra generated by all commutators; and that a ring (possibly without identity) is strongly C-regular if and only if it is Abelian C-regular (from which we infer that strong C-regularity is left-right symmetric). It is proved that for a strongly C-regular ring R, (i) if R/W(R) is commutative, then R is commutative; and (ii) every prime factor ring of R is either a commutative domain or a noncommutative division ring, where W(R) is the Wedderburn radical of R.

SOME RESULTS OF MONOMIAL IDEALS ON REGULAR SEQUENCES

  • Naghipour, Reza;Vosughian, Somayeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.711-720
    • /
    • 2021
  • Let R denote a commutative noetherian ring, and let 𝐱 := x1, …, xd be an R-regular sequence. Suppose that 𝖆 denotes a monomial ideal with respect to 𝐱. The first purpose of this article is to show that 𝖆 is irreducible if and only if 𝖆 is a generalized-parametric ideal. Next, it is shown that, for any integer n ≥ 1, (x1, …, xd)n = ⋂P(f), where the intersection (irredundant) is taken over all monomials f = xe11 ⋯ xedd such that deg(f) = n - 1 and P(f) := (xe1+11, ⋯, xed+1d). The second main result of this paper shows that if 𝖖 := (𝐱) is a prime ideal of R which is contained in the Jacobson radical of R and R is 𝖖-adically complete, then 𝖆 is a parameter ideal if and only if 𝖆 is a monomial irreducible ideal and Rad(𝖆) = 𝖖. In addition, if a is generated by monomials m1, …, mr, then Rad(𝖆), the radical of a, is also monomial and Rad(𝖆) = (ω1, …, ωr), where ωi = rad(mi) for all i = 1, …, r.

THE RESULTS CONCERNING JORDAN DERIVATIONS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.523-530
    • /
    • 2016
  • Let R be a 3!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. In this case, we show that [D(x), x]D(x) = 0 if and only if D(x)[D(x), x] = 0 for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A). If D is a continuous linear Jordan derivation on A, then we see that $[D(x),x]D(x){\in}rad(A)$ if and only if $[D(x),x]D(x){\in}rad(A)$ for all $x{\in}A$.

THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.531-542
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that [[D(x),x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all $x{\in}R$. In this case we have $[D(x),x]^3=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $[[D(x),x],x]D(x){\in}rad(A)$ or $D(x)[[D(x),x],x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

WEAKLY TRIPOTENT RINGS

  • Breaz, Simion;Cimpean, Andrada
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1179-1187
    • /
    • 2018
  • We study the class of rings R with the property that for $x{\in}R$ at least one of the elements x and 1 + x are tripotent. We prove that a commutative ring has this property if and only if it is a subring of a direct product $R_0{\times}R_1{\times}R_2$ such that $R_0/J(R_0){\cong}{\mathbb{z}}_2$, for every $x{\in}J(R_0)$ we have $x^2=2x$, $R_1$ is a Boolean ring, and $R_3$ is a subring of a direct product of copies of ${\mathbb{z}}_3$.

CONJUGATE ACTION IN A LEFT ARTINIAN RING

  • Han, Jun cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.35-43
    • /
    • 1995
  • IF R is a left Artinian ring with identity, G is the group of units of R and X is the set of nonzero, nonunits of R, then G acts naturally on X by conjugation. It is shown that if the conjugate action on X by G is trivial, that is, gx = xg for all $g \in G$ and all $x \in X$, then R is a commutative ring. It is also shown that if the conjegate action on X by G is transitive, then R is a local ring and $J^2 = (0)$ where J is the Jacobson radical of R. In addition, if G is a simple group, then R is isomorphic to $Z_2 [x]/(x^2 + 1) or Z_4$.

  • PDF

JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.347-375
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie ideal of R, and let $D:R{\rightarrow}R$ be a Jordan derivation. If [D(x), x]D(x) = 0 for all $x{\in}U$, then D(x)[D(x), x]y - yD(x)[D(x), x] = 0 for all $x,y{\in}U$. And also, if D(x)[D(x), x] = 0 for all $x{\in}U$, then [D(x), x]D(x)y - y[D(x), x]D(x) = 0 for all $x,y{\in}U$. And we shall give their applications in Banach algebras.

ON U-GROUP RINGS

  • Osba, Emad Abu;Al-Ezeh, Hasan;Ghanem, Manal
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1075-1082
    • /
    • 2018
  • Let R be a commutative ring, G be an Abelian group, and let RG be the group ring. We say that RG is a U-group ring if a is a unit in RG if and only if ${\epsilon}(a)$ is a unit in R. We show that RG is a U-group ring if and only if G is a p-group and $p{\in}J(R)$. We give some properties of U-group rings and investigate some properties of well known rings, such as Hermite rings and rings with stable range, in the presence of U-group rings.