• Title/Summary/Keyword: Jacobi scheme

Search Result 26, Processing Time 0.016 seconds

A smooth boundary scheme-based topology optimization for functionally graded structures with discontinuities

  • Thanh T. Banh;Luu G. Nam;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.73-88
    • /
    • 2023
  • This paper presents a novel implicit level set method for topology optimization of functionally graded (FG) structures with pre-existing discontinuities (pre-cracks) using radial basis functions (RBF). The mathematical formulation of the optimization problem is developed by incorporating RBF-based nodal densities as design variables and minimizing compliance as the objective function. To accurately capture crack-tip behavior, crack-tip enrichment functions are introduced, and an eXtended Finite Element Method (X-FEM) is employed for analyzing the mechanical response of FG structures with strong discontinuities. The enforcement of boundary conditions is achieved using the Hamilton-Jacobi method. The study provides detailed mathematical expressions for topology optimization of systems with defects using FG materials. Numerical examples are presented to demonstrate the efficiency and reliability of the proposed methodology.

Level Set Based Shape Optimization of Linear Structures Using Topological Derivatives (Topological Derivative를 이용한 선형 구조물의 레벨셋 기반 형상 최적 설계)

  • Ha Seung-Hyun;Kim Min-Geun;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.299-306
    • /
    • 2006
  • Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The 'Hamilton-Jacobi (H-J)' equation and computationally robust numerical technique of 'up-wind scheme' lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H -J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes is not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.

  • PDF

The level set-based topology optimization for three-dimensional functionally graded plate using thin-plate spline

  • Banh, Thanh T.;Luu, Nam G.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.633-649
    • /
    • 2022
  • This paper is first implemented with the bending behavior of three-dimensional functionally graded (3DFG) plates in the framework of level set-based topology optimization (LS-based TO). Besides, due to the suitable properties of the current design domain, the thin-plate spline (TPS) is recognized as a RBF to construct the LS function. The overall mechanical properties of the 3DFG plate are assessed using a power-law distribution scheme via Mori-Tanaka micromechanical material model. The bending response is obtained using the first-order shear deformation theory (FSDT). The mixed interpolation of four elements of tensorial components (MITC4) is also implemented to overcome a well-known shear locking problem when the thickness becomes thinner. The Hamilton-Jacobi method is utilized in each iteration to enforce the necessary boundary conditions. The mathematical formulas are expressed in great detail for the LS-based TO using 3DFG materials. Several numerical examples are exhibited to verify the efficiency and reliability of the current methodology with the previously reported literature. Finally, the influences of FG materials in the optimized design are explained in detail to illustrate the behaviors of optimized structures.

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

Level Set Based Topological Shape Optimization Combined with Meshfree Method (레벨셋과 무요소법을 결합한 위상 및 형상 최적설계)

  • Ahn, Seung-Ho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Using the level set and the meshfree methods, we develop a topological shape optimization method applied to linear elasticity problems. Design gradients are computed using an efficient adjoint design sensitivity analysis(DSA) method. The boundaries are represented by an implicit moving boundary(IMB) embedded in the level set function obtainable from the "Hamilton-Jacobi type" equation with the "Up-wind scheme". Then, using the implicit function, explicit boundaries are generated to obtain the response and sensitivity of the structures. Global nodal shape function derived on a basis of the reproducing kernel(RK) method is employed to discretize the displacement field in the governing continuum equation. Thus, the material points can be located everywhere in the continuum domain, which enables to generate the explicit boundaries and leads to a precise design result. The developed method defines a Lagrangian functional for the constrained optimization. It minimizes the compliance, satisfying the constraint of allowable volume through the variations of boundary. During the optimization, the velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian functional. Compared with the conventional shape optimization method, the developed one can easily represent the topological shape variations.

Level Set Based Shape Optimization of Linear Structures using Topological Derivatives (위상민감도를 이용한 선형구조물의 레벨셋 기반 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Kim, Min-Geun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The "Hamilton-Jacobi(H-J)" equation and computationally robust numerical technique of "up-wind scheme" lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H-J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes are not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.