• Title/Summary/Keyword: Jacket support structure

Search Result 22, Processing Time 0.022 seconds

A Study on the Application of Skirt Plates on Jacket Support Structures of Offshore Wind Turbines

  • Choi, Byeong-Ryoel;Choi, Han-Sik;Jo, Hyo-Jae;Lee, Sang-Hyep;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 2018
  • The Korea Offshore Wind Power (KOWP) is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW in the south-western coast of the country until 2019. Various types of support structures for offshore wind turbines have been proposed in the past. Nevertheless, in South Korea, jacket structures have in general, been applied as support structures for offshore wind turbines owing to the many accumulated experiences and know-how regarding this kind of support structure. The choice of offshore structure is mainly influenced by site conditions such as seabed soil type and sea environment during installation. In installing jacket sets on the seabed, the mudmat is necessary to maintain the equilibrium of the jacket without the aid of additional devices. Hence, this study proposes the installation of skirt plates underneath the bottom frame of jackets in order to improve the installation stability of jacket structures under rougher sea conditions. To confirm the effect of skirt plates, installation stability analyses considering overturning, sliding and bearing capacity have been performed. From the results, it is shown that jacket structures with skirt plates can contribute to improving the sliding stability of the structures of new wind power farms, while providing economic benefits.

New Design for Jacket-type Offshore Wind Turbine Support Structure for Southwest Coast of South Korea

  • Choi, Byeong-Ryoel;Jo, Hyo-Jae;Choi, Han-Sik;Ha, Sung-Yeol;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.184-192
    • /
    • 2017
  • The Korea Offshore Wind Power (KWOP) cooperation is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW along the southwestern coast by 2019. Hitherto, various structural types of support structures for offshore wind turbines have been being proposed, but these structures have lacked economic analysis studies. Therefore, their economical superiority to existing types has been difficult to guarantee. An offshore structure with economic efficiency will have a minimum amount of mobilizing equipment and short offshore construction period because of the application of rapid installation methods. Thus, the development of a new support structure with economic efficiency is generally considered to be necessary. Accordingly, this paper proposes a newly developed and more economical jacket type for the offshore support structure. This study confirmed its structural safety and performance by conducting a structural analysis and eigenvalue analysis. The manufacturing and installation costs were then estimated. As a result, the new jacket type of offshore support structure proposed in this study significantly reduced the manufacturing and installation costs. Therefore, it is expected that the proposed jacket will contribute to reducing construction expenses for new wind power farms and invigorating wind power farm businesses.

X-joint stress concentration of offshore wind turbine jacket support structures (해상 풍력 발전 Jacket 지지구조물의 X-joint 응력 집중 현상)

  • Lee, Jusang;Park, Hyunchul;Shi, Wei;Lee, Jongsun;Beak, Jaeha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.39.1-39.1
    • /
    • 2011
  • Due to less turbulence and no land limitation, offshore wind energy gets more attention than onshore. Jacket structure is regarded as a suitable solution for the water depth ranging from 30 to 80 meters. In general, joint stress concentration of jacket support structures affects their fatigue life. Nowadays, most jacket structures for offshore wind turbines have tubular X-joint between legs. In this paper, a study on X-joint stress concentration of offshore wind turbine jacket structure is performed by using 50m water depth model. Stress of X-joint on offshore environmental conditions are discussed.

  • PDF

Design Optimization and Reliability Analysis of Jacket Support Structure for 5-MW Offshore Wind Turbine (해상풍력발전기 자켓 지지구조물의 최적설계 및 신뢰성해석)

  • Lee, Ji-Hyun;Kim, Soo-Young;Kim, Myung-Hyun;Shin, Sung-Chul;Lee, Yeon-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2014
  • Since the support structure of an offshore wind turbine has to withstand severe environmental loads such as wind, wave, and seismic loads during its entire service life, the need for a robust and reliable design increases, along with the need for a cost effective design. In addition, a robust and reliable support structure contributes to the high availability of a wind turbine and low maintenance costs. From this point of view, this paper presents a design process that includes design optimization and reliability analysis. First, the jacket structure of the NREL 5-MW offshore wind turbine is optimized to minimize the weight and stresses, while satisfying the design requirements. Second, the reliability of the optimum design is evaluated and compared with that of the initial design. Although the present study results in a new optimum shape for a jacket support structure with reduced weight and increased reliability, the authors suggest that the optimum design has to be accompanied by a reliability analysis during the design process, as well as reliability based design optimization if needed.

Vibration Reduction Evaluation of Jacket Structure by applying Precast Concrete Block and Suction pile (Precast Concrete Block 및 Suction pile을 적용한 Jacket 구조물의 진동저감 효과 평가)

  • Lee, Sung-Jin;Kyung, Kab-Soo;Ryu, Seong-Jin;Jeong, Ji-Young;Park, Jin-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.375-384
    • /
    • 2015
  • Recently, construction sites of offshore wind power tend to move from shallow water to deep water. From this tendency, the research on the support structure of offshore wind power in deep water will be a key issue. In this study, precast concrete block and suction pile are applied to existing jacket structure. In order to reduce the vibration of this structure, the tuned liquid damper is also applied in the precast concrete block. The applicability of the suggested jacket structure is evaluated by finite element analysis. And the vibration tends to decrease about 5%, when the tuned liquid damper is applied.

On the fatigue behavior of support structures for offshore wind turbines

  • Alati, N.;Nava, V.;Failla, G.;Arena, F.;Santini, A.
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.117-134
    • /
    • 2014
  • It is believed that offshore wind farms may satisfy an increasing portion of the energy demand in the next years. This paper presents a comparative study of the fatigue performances of tripod and jacket steel support structures for offshore wind turbines in waters of intermediate depth (20-50 m). A reference site at a water depth of 45 m in the North Atlantic Ocean is considered. The tripod and jacket support structures are conceived according to typical current design. The fatigue behavior is assessed in the time domain under combined stochastic wind and wave loading and the results are compared in terms of a lifetime damage equivalent load.

Reliability Analysis Offshore Wind Turbine Support Structure Under Extreme Ocean Environmental Loads (극한 해양 환경하중을 고려한 해상풍력터빈 지지구조물의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Reliability analysis of jacket type offshore wind turbine (OWT) support structure under extreme ocean environmental loads was performed. Limit state function (LSF) of OWF support structure is defined by using structural dynamic response at mud-line. Then, the dynamic response is expressed as the static response multiplied by dynamic response factor (DRF). Probabilistic distribution of DRF is found from response time history under design significant wave load. Band limited beta distribution is used for internal friction angle of ground soil. Wind load is obtained in the form of thrust force from commercial code called GH_Bladed and then, applied to tower hub as random load. In a numerical example, the response surface method (RSM) is used to express LSF of jacket type support structure for 5MW OWF. Reliability index is found using first order reliability method (FORM).

Damage Estimation Method for Jacket-type Support Structure of Offshore Wind Turbine (재킷식 해상풍력터빈 지지구조물의 손상추정기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.64-71
    • /
    • 2017
  • A damage estimation method is presented for jacket-type support structure of offshore wind turbine using a change of modal properties due to damage and committee of neural networks for effective structural health monitoring. For more practical monitoring, it is necessary to monitor the critical and prospective damaged members with a limited number of measurement locations. That is, many data channels and sensors are needed to identify all the members appropriately because the jacket-type support structure has many members. This is inappropriate considering economical and practical health monitoring. Therefore, intensive damage estimation for the critical members using a limited number of the measurement locations is carried out in this study. An analytical model for a jacket-type support structure which can be applied for a 5 MW offshore wind turbine is established, and a training pattern is generated using the numerical simulations. Twenty damage cases are estimated using the proposed method. The identified damage locations and severities agree reasonably well with the exact values and the accuracy of the estimation can be improved by applying the committee of neural networks. A verification experiment is carried out, and the damage arising in 3 damage cases is reasonably identified.

Seismic Reliability Analysis of Offshore Wind Turbine Support Structure (해상풍력발전기 지지구조물의 지진신뢰성해석)

  • Lee, Gee-Nam;Kim, Dong-Hyawn
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.342-350
    • /
    • 2015
  • A seismic reliability analysis of the jacket-type support structure for an offshore wind turbine was performed. When defining the limit state function using the dynamic response of the support structure, numerous dynamic calculations should be performedin an approach like the FORM (first-order reliability method). This causes a substantial increase in the analysis cost. Therefore, in this paper, a new reliability analysis approach using the static response is used. The dynamic effect of the response is considered by introducing a new parameter called the peak response factor (PRF). The probability distribution of the PRF could be estimated using the peak value of the dynamic response. The probability distribution of the PRF was obtained for a set of ground motions. A numerical example is considered to compare the proposed approach with the conventional static-response-based approach.

Benchmark test of large scale offshore wind turbine with jacket foundation

  • Baek, Jaeha;Park, Hyunchul;Shi, Wei;Lee, Jusang;Lee, Jongsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • Nowadays, offshore wind energy experiences a rapid development because of its wind condition and no noise impact problem. Different from Europe, offshore wind is just started in Asia. More work and research are needed in Korea. In this work, a three-bladed upwind variable speed pitch controlled 5MW wind turbine on a jacket support structure is used. During the simulation, several design load cases are investigated in two different fully coupled aero-hydro-servo-elastic codes. Some critical loads on the foundation are compared and analyzed.

  • PDF