• Title/Summary/Keyword: JKMS

Search Result 2,549, Processing Time 0.024 seconds

Formation of Ferromagnetic Ge3Mn5 Phase in MBE-grown Polycrystalline Ge1-xMnx Thin Films (다결정 Ge1-xMnx 박막에서 Ge3Mn5 상의 형성과 특성)

  • Lim, Hyeong-Kyu;Anh, Tran Thi Lan;Yu, Sang-Soo;Baek, Kui-Jong;Ihm, Young-Eon;Kim, Do-Jin;Kim, Hyo-Jin;Kim, Chang-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.85-88
    • /
    • 2009
  • Magnetic phases of polycrystalline $Ge_{1-x}Mn_x$ thin films were studied. The $Ge_{1-x}Mn_x$ thin films were grown at $400^{\circ}C$ by using a molecular beam epitaxy. The $Ge_{1-x}Mn_x$thin films were p-type and electrical resistivities were $4.0{\times}10^{-2}{\sim}1.5{\times}10^{-4}ohm-cm$. Based on the analysis of magnetic characteristics and microstructures, it was concluded that the ferromagnetic phase formed on the $Ge_{1-x}Mn_x/SiO_2$/Si(100) thin films was $Ge_3Mn_5$ phase which has about 310 K of Curie temperature. Moreover, the $Ge_{1-x}Mn_x$ thin film which had $Ge_3Mn_5$ phase showed the negative magnetoresistance to be about 9% at 20 K when the magnetic field of 9 T was applied.

The Study of Magnetic Properties of Ni-Zn-Cu Ferrite by variation of Low Temperature Sintered (저온소결 온도변화에 따른 Ni-Zn-Cu 페라이트의 자기적 특성 연구)

  • Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.232-237
    • /
    • 2007
  • We have synthesized the low temperature sintered of Ni-Zn-Cu ferrite with nonstoichiometric composition a little deficient in $Fe_2O_3$ from $(Ni_{0.2}Cu_{0.2}Zn_{0.6})_{1+x}(Fe_2O_3)_{1-x}$. For low loss and acceleration of grain growth $TiO_2$ and $Li_2CO_3$ was added from 0.25 mol% to 1.0 mol%. The mixture of the law materials was calcinated and milled. The compacts of toroidal type were sintered at different temperature $(875^{\circ}C,\;900^{\circ}C,\;925^{\circ}C\;950^{\circ}C)$ for 2 hours in air followed by an air cooling. Then, effects of composition and sintering temperatures on the physical properties such as density, resistivity, magnetic induction, coercive force, initial permeability, and quality factor of the Ni-Zn-Cu ferrite were investigated. The density of the Ni-Zn-Cu ferrite was $4.85\sim5.32g/cm^3$, resistivity revealed $10^8\sim10^{12}\Omega-cm$. The magnetic properties obtained from the aforementioned Ni-Zn-Cu ferrite specimens were 1,300 gauss for the maximum induction, 4.5 oersted for the coercive force, 275 for the initial permeability, and 83 for the quality factor. The physical properties indicated that the specimens could be utilized as the core of high frequency range (involved microwave range) communication and deflection yoke of T.V.

Manufacture and Evaluation of Reference Samples for Low Magnetic Moment (저자기 모멘트용 표준시료 제작 및 성능평가)

  • Park, I.W.;Hong, Y.S.;Kim, Y.M.;Yoon, H.;Lee, K.J.;Cho, S.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • We have manufactured and evaluated reference samples for the use of low magnetic moment measurements. Before the measurements, SQUID magnetometers were magnetically shielded from external magnetic noise. We considered the purity including magnetic impurities, the optimum thickness, the modification method, and the shape in the preparation of the samples. Three paramagnetic polycrystaline metal plates of Ti, W, and Al with the area of $4mm{\times}6mm$ were prepared finally. The magnetic moments of these three samples are measured very linear up to the field of 5 T without magnetic hysteresis. The temperature deviated ratios of the magnetic moments for Ti, Al, and W from 290 K to 310 K are 0.7, 1.5, and 0.1 %, respectively. The measured magnetic moments for Ti and W samples by our research team are very well agreeable with those by two SQUID magnetometers and a VSM at Quantum Design via international round robin test. The results suggest that the prepared reference samples are well suited for the use in the low magnetic moment measurement with SQUID based magnetometers.

The Study of Hyperfine Fields for Co0.9Zn0.1Cr1.9857Fe0.02O4 (Co0.9Zn0.1Cr1.9857Fe0.02O4 물질의 초미세자기장 연구)

  • Choi, Kang-Ryong;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.39-42
    • /
    • 2008
  • [ $AB_2X_4$ ](A, B=Transition Metal, X=O, S, Se) are cubic spinel normal ferrimagnets, in which M ions occupy the tetrahedral sites and Cr ions occupy the octahedral sites. Recently, they have been investigated for behaviour of B site ions and A-B interaction. Polycrystalline $[Co_{0.9}Zn_{0.1}]_A[Cr_{1.98}{^{57}Fe_{0.02}}]_BO_4$ compound was prepared by wet-chemical process. The ferrimagnetic transition was observed around 90K. $M\"{o}ssbauer$ absorption spectra at 4.2K show that the well-developed two sextets are superposed with small difference in hyperfine fields($H_{hf}$). The hyperfine fields of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$ and $Co_{0.9}Zn_{0.1}Cr_{1.98}{^{57}Fe_{0.02}}O_4$ were determined to be 488, 478 kOe and 486, 468 kOe, respectively. We notice that the one of the magnetic hyperfine field values changes with Zn ion substitution. These results suggest the incommensurate states and spin-reorientation temperature($T_S=18K$) changes with Zn ions substitution below spin-reorientation temperature($T_S=28K$) of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$

Mössbauer Study of Crystallographic and Magnetic Properties in Vanadium Ferrite(VxFe3-xO4) Thin Films (바나듐 페라이트 박막의 결정구조 및 자기적 성질에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The mixed ferrite $V_xFe_{3-x}O_4$(x=0.0, 0.15, 0.5, 1.0) thin films were prepared by sol-gel method. Their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). The crystal structure is found to be cubic spinel throughout the series($x{\leq}1.0$), and the lattice parameter $a_0$ increases linearly with increasing V content. XRD, XSP and CEMS indicate that $V^{3+}$ substitution for $Fe^{3+}$ in B-site is superior to $V^{2+}$ substitution for $Fe^{2+}$ in B-site. It is noticeable that both quadrupole shift and hyperfine field decreases with increasing V composition, suggesting the change of local symmetry and accompanying line-broadening. The line-broadening on CEMS spectra can be explained by the distribution of magnetic hyperfine fields.

Mössbauer Studies of Manganese Iron Oxide Nanoparticles (망간-철산화물 나노입자의 뫼스바우어 분광 연구)

  • Hyun, Sung-Wook;Shim, In-Bo;Kim, Chul-Sung;Kang, Kyung-Su;Park, Chu-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • We have prepared $MnFe_2O_4$ nanoparticles with polyol method. The crystallographic and magnetic properties were measured by using X-ray diffraction(XRD), vibrating sample magnetometer(VSM) and $M\"{o}ssbauer$ spectroscopy. The high resolution transmission electron microscope(HRTEM) shows uniform nanoparticle-sizes with $6{\sim}8$ nm. The crystal structure is found to be single-phase cubic spinel with space group of Fd3m. The lattice constant of $MnFe_2O_4$ nanparticles is determined to be $8.418{\pm}0.001{\AA}$. $M\"{o}ssbauer$ spectrum of $MnFe_2O_4$ nanparticles at room temperature(RT) shows a superparamagnetic behavior. In VSM analysis, the diagnosis of the superparamagnetic behavior is also shown in hysteresis loop at RT. $M\"{o}ssbauer$ spectrum at 4.2K shows that the well developed two sextets are with different hyperfine field $H_{hfA}=498$(A-site) and $H_{hfB}=521$(B-site) kOe.

Analysis of Ferromagnetic Resonance Linewidth in Ni Thin Film Fabricated by Electrodeposition Method (전기 도금법으로 제작한 Ni 박막의 강자성 공명 선폭 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • We obtained resonance field ($H_{res}$) and linewidth (${\Delta}H_{PP}$) from measured ferromagnetic resonance signal in the functions of polar angle (${\Theta}_H$) in Ni thin film of 240 nm thickness fabricated by electrodeposition method. The angular dependence of $H_{res}$ was well fitted with the calculated ones. We confirmed that the g-factor and effective demagnetization field were 2.18 and 445 emu/cc by the theoretical analysis of the resonance field, respectively. The angular dependence of ${\Delta}H_{PP}$ showed very large values at in-plane direction (${\Theta}_H=90^{\circ}$), which could not explained by the homogenous linewidth due to the Gilbert damping and inhomogeneous linewidth due to the angular variations and magnetization variations by the surface layer. Therefore, we considered the spin wave scattering (two magnon scattering) process in order to analyze the measured inhomogeneous linewidth, which was appeared in thicker film than the critical thickness of 50 nm. The defect medicated spin wave scattering played a key role in the electrodoposited Ni thin film of 240 nm thickness.

Hyperthermia Properties of Fe3O4 Nanoparticle Synthesized by Hot-injection Polyol Process (Hot-injection Polyol 공정에 의해 제조된 Fe3O4 나노입자의 Hyperthermia 특성)

  • Lee, Seong Noh;Kouh, Taejoon;Shim, In-Bo;Shim, Hyun Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.51-55
    • /
    • 2014
  • The $Fe_3O_4$ nanoparticle was synthesized by the hot-injection method while varying the injection time of the precursor solution. The crystal structure was determined to be cubic inverse spinel with space group of Fd-3m based on X-ray diffraction (XRD) measurements and the morphology of the prepared $Fe_3O_4$ nanoparticle was studied with a high-resolution transmission electron microscope (HR-TEM). When the precursor solution was injected for 0.5 min, the size of the $Fe_3O_4$ nanoparticle was 7.63 nm, while the size of the obtained particle was 21.27 nm with the injection time of 60 min. The magnetic properties of the prepared $Fe_3O_4$ nanoparticle were investigated by both vibrating sample magnetometer (VSM) and $^{57}Co$ M$\ddot{o}$ssbauer spectroscopy at various temperatures. From the hyperthermia measurement, we observed that the temperature of the $Fe_3O_4$ nanoparticle powder reached around $120^{\circ}C$ under 250 Oe at 50 kHz, when the injection time of the precursor solution was 60 min.

CEMS Study of Ferrite Films M0.2Fe2.8O4 (M =Mn, Ni, Cu) (페라이트 박막 M0.2Fe2.8O4(M=Mn, Ni, Cu)의 Mössbauer 분광학적 연구)

  • Park, Jae Yun;Kim, Kwang Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2014
  • The crystallographic properties and cationic distribution of $M_{0.2}Fe_{2.8}O_4$ (M =Mn, Ni, Cu) and $Fe_3O_4$ thin films prepared by sol-gel method have been investigated by X-ray diffraction (XRD) and conversion electron M$\ddot{o}$ssbauer spectroscopy (CEMS). The ionic valence, preferred site, and hyperfine field of Fe ions of the ferrites could be obtained by analyzing the CEMS spectra. The $M_{0.2}Fe_{2.8}O_4$ films were found to maintain cubic spinel structure as in $Fe_3O_4$ with the lattice constant slightly decreased for Ni substitution and increased for Mn and Cu substitution from that of $Fe_3O_4$. Analyses on the CEMS data indicate that $Mn^{2+}$ and $Ni^{2+}$ ions substitute octahedral $Fe^{2+}$ sites mostly, while $Cu^{2+}$ ions substitute both the octahedral and tetrahedral sites. The observed intensity ratio $A_B/A_A$ of the CEMS subspectra of the samples exhibited difference from the theoretical value. It is interpreted as due to the effect of the M substitution for A and B on the Debye temperature of the site. The relative line-broadening of the B-site CEMS subspectra can be explained by the dispersion of magnetic hyperfine fields due to random distribution of M cations in the B sites.

Magnetism and Magnetocrystalline Anisotropy of CoFe Thin Films: A First-principles Study (CoFe 박막의 자성과 자기결정이방성에 대한 제일원리계산)

  • Kim, Eun Gu;Jekal, So Young;Kwon, Oryong;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • We investigate magnetism and magnetocrystalline anisotropy of CoFe thin films, using VASP code in GGA. In this study Co-terminated and Fe-terminated 5-layer CoFe thin films are employed. The Co-terminated CoFe thin film shows two total energy minima at 2-dimensional lattice constants of $2.45{\AA}$ and $2.76{\AA}$. The film of $2.45{\AA}$ has fcc-like structure and the film of $2.76{\AA}$ has bcc-like structure similarly to a bulk CoFe alloy. And the fcc-like film is more stable by the energy difference of about 160 meV compared to the bcc-like film. The Fe-terminated CoFe film shows very complicated behaviour of total energy which is suspected to be closely related to its complex magnetic structure. The Co-terminated CoFe film of $2.76{\AA}$ shows perpendicular magnetocrystalline anisotropy (MCA), while the film of 2.45 does parallel MCA. The Fe-terminated CoFe film also exhibits similar MCA behaviour.