• Title/Summary/Keyword: JIDA

Search Result 7, Processing Time 0.021 seconds

Helper virus-free gutless adenovirus (HF-GLAd): a new platform for gene therapy

  • Liu, Jida;Seol, Dai-Wu
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.565-575
    • /
    • 2020
  • Gene therapy is emerging as a treatment option for inherited genetic diseases. The success of this treatment approach greatly depends upon gene delivery vectors. Researchers have attempted to harness the potential of viral vectors for gene therapy applications over many decades. Among the viral vectors available, gutless adenovirus (GLAd) has been recognized as one of the most promising vectors for in vivo gene delivery. GLAd is constructed by deleting all the viral genes from an adenovirus. Owing to this structural feature, the production of GLAd requires a helper that supplies viral proteins in trans. Conventionally, the helper is an adenovirus. Although the helper adenovirus efficiently provides helper functions, it remains as an unavoidable contaminant and also generates replication-competent adenovirus (RCA) during the production of GLAd. These two undesirable contaminants have raised safety concerns and hindered the clinical applications of GLAd. Recently, we developed helper virus-free gutless adenovirus (HF-GLAd), a new version of GLAd, which is produced by a helper plasmid instead of a helper adenovirus. Utilization of this helper plasmid eliminated the helper adenovirus and RCA contamination in the production of GLAd. HF-GLAd, devoid of helper adenovirus and RCA contaminants, will facilitate its clinical applications. In this review, we discuss the characteristics of adenoviruses, the evolution and production of adenoviral vectors, and the unique features of HF-GLAd as a new platform for gene therapy. Furthermore, we highlight the potential applications of HF-GLAd as a gene delivery vector for the treatment of various inherited genetic diseases.

BIRB 796 has Distinctive Anti-inflammatory Effects on Different Cell Types

  • Ryoo, Soyoon;Choi, Jida;Kim, Jaemyung;Bae, Suyoung;Hong, Jaewoo;Jo, Seunghyun;Kim, Soohyun;Lee, Youngmin
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.283-288
    • /
    • 2013
  • The pro-inflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF${\alpha}$) and interleukin (IL)-$1{\beta}$ are crucial mediators involved in chronic inflammatory diseases. Inflammatory signal pathways regulate inflammatory cytokine expression-mediated by p38 mitogen activated protein kinase (p38MAPK). Therefore, considerable attention has been given to p38MAPK as a target molecule for the development of a novel anti-inflammatory therapeutics. BIRB 796, one of p38MAPK inhibitor, is a candidate of therapeutic drug for chronic inflammatory diseases. In this study, we investigated the effect of BIRB 796 on inflammatory cytokine productions by lipopolysaccharide (LPS) in different immune cell types. BIRB 796 reduced LPS-mediated IL-8 production in THP-1 cells but not in Raw 264.7 cells. Further analysis of signal molecules by western blot revealed that BIRB 796 sufficiently suppressed LPS-mediated phosphorylation of p38MAPK in both cell types whereas it failed to block inhibitor of kappa B (I-${\kappa}B$) degradation in Raw 264.7 cells. Taken together, these results suggest that the anti-inflammatory function of BIRB 796 depends on cell types.

Evaluation of different molecular methods for detection of Senecavirus A and the result of the antigen surveillance in Korea during 2018

  • Heo, JinHwa;Lee, Min-Jung;Kim, HyunJoo;Lee, SuKyung;Choi, Jida;Kang, Hae-Eun;Nam, Hyang-Mi;Nah, JinJu
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • Senecavirus A (SVA), previously known as Seneca Valley virus, can cause vesicular disease and neonatal losses in pigs that is clinically indistinguishable from foot-and-mouth disease virus (FMDV). After the first case report in Canada in 2007, it had been restrictively identified in North America including United States. But, since 2015, SVA emerged outside North America in Brazil, and also in several the Asian countries including China, Thailand, and Vietnam. Considering the SVA occurrence in neighboring countries, there has been a high risk that Korea can be introduced at any time. In particular, it is very important in terms of differential diagnosis in the suspected case of vesicular diseases in countries where FMD is occurring. So far, several different molecular detection methods for SVV have been published but not validated as the reference method, yet. In this study, seven different molecular methods for detecting SVA were evaluated. Among them, the method by Flowler et al, (2017) targeted to 3D gene region with the highest sensitivity and no cross reaction with other vesicular disease agents including FMDV, VSV and SVD, was selected and applied further to antigen surveillance of SVA. A total of 245 samples of 157 pigs from 61 farms submitted for animal disease diagnose nationwide during 2018 were tested all negative. In 2018, no sign of SVA occurrence have been confirmed in Korea, but the results of the surveillance for SVA needs to be continued and accumulated at a high risk of SVA in neighboring countries.

Interleukin-$32{\gamma}$ Transgenic Mice Resist LPS-Mediated Septic Shock

  • Kim, Sun Jong;Lee, Siyoung;Kwak, Areum;Kim, Eunsom;Jo, Seunghyun;Bae, Suyoung;Lee, Youngmin;Ryoo, Soyoon;Choi, Jida;Kim, Soohyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1133-1142
    • /
    • 2014
  • Interleukin-32 (IL-32) is a cytokine and inducer of various proinflammatory cytokines such as $TNF{\alpha}$, IL-$1{\beta}$, and IL-6 as well as chemokines. There are five splicing variants (${\alpha}$, ${\beta}$, ${\gamma}$, ${\delta}$, and ${\varepsilon}$) and IL-$32{\gamma}$ is the most active isoform. We generated human IL-$32{\gamma}$ transgenic (IL-$32{\gamma}$ TG) mice to express high level of IL-$32{\gamma}$ in various tissues, including immune cells. The pathology of sepsis is based on the systemic inflammatory response that is characterized by upregulating inflammatory cytokines in whole body, particularly in response to gram-negative bacteria. We investigated the role of IL-$32{\gamma}$ in a mouse model of experimental sepsis by using lipopolysaccharides (LPS). We found that IL-$32{\gamma}TG$ mice resisted LPS-induced lethal endotoxemia. IL-$32{\gamma}$ reduced systemic cytokines release after LPS administration but not the local immune response. IL-$32{\gamma}TG$ increased neutrophil influx into the initial foci of the primary injected site, and prolonged local cytokines and chemokines production. These results suggest that neutrophil recruitment in IL-$32{\gamma}TG$ occurred as a result of the local induction of chemokines but not the systemic inflammatory cytokine circulation. Together, our results suggest that IL-$32{\gamma}$ enhances an innate immune response against local infection but inhibits the spread of immune responses, leading to systemic immune disorder.

Interzonal Comparative Analysis of the Wintering Habitat of Spot-billed Duck (Anas poecilorhyncha) (흰뺨검둥오리의 지역간 월동서식지이용 비교분석)

  • Hwang, Jong-Kyeong;Shin, Man-Seok;Kang, Young-Myong;Yoom, Hachung;Choi, Jida;Jeong, Wooseog;Lee, Jun-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.676-683
    • /
    • 2016
  • This study was conducted using the Wild -Tracker (WT-300, GPS-Mobile Phone Based Telemetry KoEco) to understand the habitats of the spot-billed duck wintering in urban and rural areas and provide the results as the basic data for the protection and management of the habitats of the waterbirds in Korea. Study areas consisted of the Anseong stream in Gyeonggi-do and the Sansu reservoir in Haenam. Five spot-billed ducks were captured by region, and we attached Wild-Tracker to each of the spot-billed ducks. We analyzed the tracking location data using ArcGIS 9.x and calculated Kernel Density Estimation (KDE) and Minimum Convex Polygon (MCP). The average home-range measured by MCP was $250.8km^2$(SD=195.3, n=5) in Anseong and was $89.1km^2$ (SD=69.6, n=5) in Haenam. 50% home-range measured by KDE was $21.8km^2$ (SD=26.9, n=5) in Anseong and $3.5km^2$ (SD=2.2, n=5) in Haenam, indicating a narrow home range in Haenam. During the winter season, both wetland and paddy field were mostly used as habitats in Anseong and Haenam. While the paddy field utilization rate was high in the daytime in Haenam, it was high in the nighttime in Anseong. By late winter, Haenam's day time paddy field utilization rate and Anseong's night time paddy field utilization rate increased.

Home-Range of Mallard and Spot-billed Duck in Korea (청둥오리와 흰뺨검둥오리의 월동기 행동권 비교 연구)

  • Shin, Yong-un;Shin, Man-Seok;Lee, Han-soo;Kang, Yongmyung;Jeong, Wooseog;Choi, Jida;Yoon, Hachung;Oh, Hong-shik
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.165-172
    • /
    • 2016
  • Mallard and Spot-billed ducks that are typical wintering water birds use the wide rice field in the center of the water system as a wintering ground. I try to figure out the daily movement distance from Home-Range to wintering ground for mallard and spot-billed ducks in Mangyunggang, Dongjingang where located in central region. In 2015 wintering period by using a Cannon-net, I attached WT-300 to 5 mallard and 5 spot-billed ducks. Daily movement distance is an overall average 0.89km, the largest distance was 31.09km. Daily movement distance of mallard was 0.97km, the largest distance was 28.78km. Daily movement distance of Spot-billed ducks was 0.80km, the largest distance was 33.39km. Home-Range analysis is used by the SHP files that is compatible with GIS and ArcGIS 9.0 Animal Movement Extension, it was analyzed using the Minimum Convex Polygon Method (MCP) and the Kernel Density Estimation (KDE). The behavior rights of two kinds of ducks was $490.34km^2$ by Minimum Convex Polygon Method (MCP) ($SD=311.20km^2N=10$), an important habitats Kernel Density Estimation (KDE 50%) was $42.24km^2$. Home-Range of Mallard (MCP) was $568.02km^2$, it is wider than home-range(MCP) of spot-billed duck $397.13km^2$ relatively, the core habitats of mallard is $53.05km^2$, it is wider than mallard's core habitats(KDE 50%) $29.26km^2$ relatively.