• Title/Summary/Keyword: JEM

Search Result 94, Processing Time 0.019 seconds

Effects of BCG on the Absorptive Cells in the Appendix of the Mouse Implanted with Ehrlich Carcinoma Cells (BCG가 Ehrlich 암세포를 이식한 생쥐의 막창자꼬리점막 흡수세포의 미세구조에 미치는 영향)

  • Lee, Woon-Woo;Park, Kyung-Ho;Kim, Myeong-Soo;Park, Dae-Kyoon;Ko, Jeong-Sik
    • Applied Microscopy
    • /
    • v.37 no.3
    • /
    • pp.157-166
    • /
    • 2007
  • This experiment was performed to evaluate the ultrastructural responses of the absorptive cells in the appendix of the mouse, inoculated with Ehrlich carcinoma cells in the inguinal area, following administration of BCG (Bacillus Calmette-Guerin). Healthy adult ICR mice weighing 25 gm each were divided into normal and experimental groups (experimental control group and BCG treated group). In the experimental groups, each mouse was inoculated with $1{\time}10^7$ Ehrlich carcinoma cells subcutaneously in the inguinal area. From next day after inoculations, 0.5mL of saline or BCG (0.5 mL/25gm B.W.: $0.03{\times}10^8{\sim}0.32{\times}10^8CFU$) were injected subcutaneously to the animals every other day. The day following the last injection, each mouse was sacrificed. Pieces of the tissue were taken from the appendix, prefixed with 2.5% glutaraldehyde-1.5% paraformaldehyde solution, followed by post-fixation with 1% osmium tetroxide solution. The ultrathin sections were stained with uranyl acetate and lead citrate. In the normal control, experimental control and BCG treated mice, general morphology of the absorptive cells of appendix were similar. But myelin figures and intramitochondrial dense granules were more frequently observed in the absorptive cells of BCG treated mice than normal control ones. Above results show that BCG did show slight ultrastructural alterations in the absorptive cell of the appendix. These results that BCG may slightly suppress function of the absorptive cells of the appendix.

Electron Microscopic Studies on Olfactory Bulbs in the Vertebrates by Phylogenetics (계통발생에 따른 척추동물의 뇌후구에 대한 전자현미경적 연구)

  • Choi, W.B.;Chung, Y.H.;Seo, J.E.
    • Applied Microscopy
    • /
    • v.15 no.2
    • /
    • pp.31-68
    • /
    • 1985
  • Authors are trying to unveil the ultrastructural organization of olfactory bulb, which has been summerized under light microscopic level or communicated only in some detail in different view point until now. For the critical point of view, since the phylogenetical approach will give the ultimate value in the correlative study between structural and functional bases (Brodal, 1969), the present study was carried out light and electron microscopic analyses of the structures of the neurons and synaptic organizations in olfactory bulbs from different animals in phylogenetical scale. We selected each one species from five animal classes: the house rabbit(Oryctolagus cuniculus var. domesticus [Gmelin]) from Mammalia, the domestic fowl (Gallus gallus domesticus Brisson) from Aves, the viper (Agkistrodon hylys [G.P. Pallas]) from Reptilia, a frog (Bombiana orientalis Boulenger) from Amphibia and the crussian carp (Carassius carassius [Linne]) from Pisces. For light microscopic study, samples were fixed in 10% formalin and paraffin sections were stained with hematoxylin-eosin. For the electron microscopic study, the tissues were fixed by perfusion through the heart or immersion with 1% paraform-aldehyde-glutaraldehyde mixture (phosphate buffer, pH 7.4), and final tissue block trimmed under dissecting microscope were osmicated (1% OsO4), they were embedded in Araldite or Epon 812, and ultrathin sections were made by LKB-V ultratome following the inspection of semi-thin sections stained with toluidine blue-borax solution. Ultra-thin sections contrasted with uranyl acetate and lead citrate were observed with JEM 100CX electron microscope. We have summerized our morphological analyses as follows: 1. The olfactory bulb of rabbit, viper and frog shows the eight layers of fila olfactoria, glomerular, external granular, external plexiform, mitral cell, internal plexiform, internal granular, medullary but domestic fowl shows the five layers of glomerular, fibrillar, mitral, granular and medullary and the three layers of fibrilla, glomerular and medullary in crussian carp. The sharpness of demarcation between the layers shows deferential tendency according to phylogenetical order. 2. Mitral cells of vertebrate have large triangular or oval shape with spherical nuclei which contain not so much chromatin. The cytoplasm contains numerous cell organelles, of which Nissl's bodies or granular endoplasmic reticula arranged as parallel strands. Development of granular endoplasmic reticula were declined as the phylogentical grade is going lower. 3. Tufted cells of all animal are mostly spindle or polygonal contour and contain oval nuclei which located in periphery of cytoplasm. The nuclei of rabbit, fowl, viper and frog has relatively space chromatin, but a nucleus of crussian carp contain irregularly aggregated chromatin in karyoplasm. Their cytoplasmic volume and cell organelle contents are in between those of mitral cell and granular cell. They contain moderate amount of mitochondria, granular endoplasmic reticula, a few Golgi complex, polysomes, lysosome, etc. 4. Granule of cells of all the vertebrate amimals studied exhibit similar features; cells and their dense nuclei show spherical or oval contour, and they have the thin rim of cytoplasm which contain only a few cell organelles. 5. In rabbit, the soma of mitral cells were in contact with boutons with two types of synaptic vesicles, that is, round and flat vesicles, especially flat vesicles in boutons were showing reciprocal synapses. However, in domestic fowls, vipers, frogs and crussian carps, there were found boutons showing only spherical synaptic vesicles. 6. The boutons containing round synaptic vesicles were made contact with the some of tufted cell of olfactory bulb in the rabbits, fowls, vipers and frogs, but no synaptic boutons were observed in soma of tufted cells in crussian carps. In the frogs, there were observed dendrites were contact with the soma of tufted cells. 7. In the neuropils of plexiform, granular and glomerular layers olfactory bulbs in the vertebrate, the synapses were axo-large dendrites, axo-median and small dendrites, dendrodendritic, and axo-axonal contacts. However, in the neuropil of crussian carps, synapses were observed only in glomerular layer.

  • PDF

MORPHOLOGIC CHANGE OF DENTIN SURFACE ACCORDING TO THE DIFFERENCE IN CONCENTRATION AND APPLICATION TIME OF PHOSPHORIC ACID (인산용액의 농도 및 적용시간 차이에 따른 상아질 표면의 형태적 변화)

  • Kim, Myeong-Su;Ohn, Young-Seok;Lee, Kwang-Won;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.141-161
    • /
    • 1998
  • The depth and patterns of demineralization according to the difference in concentration and application time of phosphoric acid were observed through the transmission electron microscope, and shear bond strengths to the acid -conditioned dentin were then measured and compared with the TEM results. To investigate the influence of polymer addition into the phosphoric acid and the effect of difference in concentration and application time of the acid, the specimens were randomly divided into 9 groups. Among the specimens, the exposed dentin surfaces were acid-conditioned with 10% polymer-thickened phosphoric acid(All Bond 2, Bisco, U.S.A.) and aqueous 10%, 20%, 30%, 40% phosphoric acid for 20 seconds, The rest of the specimens were acid-conditioned with 10% phosphoric acid for 15s, 30s, 60s, 120s respectively. The specimens were immersed in 4% glutaraldehyde in 0.1M sodium cacodylate buffer and postfixed with 1 % osmium tetroxide without decalcification and then observed under a JEOL Transmission Electron Microscope(JEM 1200 EX II, Japan). After the specimens were acid-conditioned as the above, primer and adhesive resin were applied to blot-dried dentin and shear bond strengths were then measured and analysed. The results were as follows : 1. The intertubular demineralization depth of 4.0-$5.0{\mu}m$ in 10% polymer-thickened phosphoric acid gels was similar or slightly deeper than that of 4.0-$4.5{\mu}m$ in aqueous 10% phosphoric acid solution. 2. The intertubular demineralization depth of aqueous 20%, 30% and 40% phosphoric acid solution was 6.5-$7.0{\mu}m$, 6.5-$7.5{\mu}m$ and 9.0-$15.0{\mu}m$ respectively. It showed that the depth of dentin demineralization is partly related to the concentration of phosphoric acid solution. 3. The intertubular demineralization depth of aqueous 10% phosphoric acid solution in application time for 15s, 30s, 60s and 120s was 2.5-$3.0{\mu}m$, 4.0-$6.0{\mu}m$, 6.5-$7.0{\mu}m$ and 8.5-$14.0{\mu}m$ respectively. It showed that the depth of dentin demineralization is directly related to the application time of phosphoric acid solution. 4. The partially demineralized dentin layer between demineralized collagen layer and unaffected dentin was showed to a width of 0.5-$1.0{\mu}m$ in lower concentration groups treated with aqueous 10% phosphoric acid for 20s, 60s, 120s and 20% phosphoric acid for 20s. 5. The demineralization effect at the border of intertubular-peritubular junction was less evident than that in the peritubular and intertubular dentin. The collagen fibers in the intertubular dentin had a random orientation, whereas those that lined the tubules were circumferentially aligned. The cross-linkage of dentinal collagen in demineralized collagen layer was clearly seen. 6. A statistically significant difference of bond strengths according to the difference in phosphoric acid concentration did not exist among the groups treated with 10%, 20%, 30% and 40% acid solution (P>0.05). However, bond strengths to the treated dentin with 10% phosphoric acid solution for 30s were significantly higher than that for 120s (P<0.05).

  • PDF

Development of Porcine Pericardial Heterograft for Clinical Application (Microscopic Analysis of Various Fixation Methods) (돼지의 심낭, 판막을 이용한 이종이식 보철편의 개발(고정 방법에 따른 조직학적 분석))

  • Kim, Kwan-Chang;Choi, Chang-Hyu;Lee, Chang-Ha;Lee, Chul;Oh, Sam-Sae;Park, Seong-Sik;Kim, Woong-Han;Kim, Kyung-Hwan;Kim, Yong-Jiin
    • Journal of Chest Surgery
    • /
    • v.41 no.3
    • /
    • pp.295-304
    • /
    • 2008
  • Background: Various experimental trials for the development of bioprosthetic devices are actively underway, secondary to the limited supply of autologous and homograft tissue to treat cardiac diseases. In this study, porcine bioprostheses that were treated with glutaraldehyde (GA), ethanol, or sodium dodecylsulfate (SDS) were examined with light microscopy and transmission electron microscopy for mechanical and physical imperfections before implantation, Material and Method: 1) Porcine pericardium, aortic valve, and pulmonary valve were examined using light microscopy and JEM-100CX II transmission electron microscopy, then compared with human pericardium and commercially produced heterografts. 2) Sections from six treated groups (GA-Ethanol, Ethanol-GA, SDS only, SDS-GA, Ethanol-SDS-GA and SDS-Ethanol-GA) were observed using the same methods. Result: 1) Porcine pericardium was composed of a serosal layer, fibrosa, and epicardial connective tissue. Treatment with GA, ethanol, or SDS had little influence on the collagen skeleton of porcine pericardium, except in the case of SDS pre-treatment. There was no alteration in the collagen skeleton of the porcine pericardium compared to commercially produced heterografts. 2) Porcine aortic valve was composed of lamina fibrosa, lamina spongiosa, and lamina ventricularis. Treatment with GA, ethanol, or SDS had little influence on these three layers and the collagen skeleton of porcine aortic valve, except in the case of SDS pre-treatment. There were no alterations in the three layers or the collagen. skeleton of porcine aortic valve compared to commercially produced heterografts. Conclusion: There was little physical and mechanical damage incurred in porcine bioprosthesis structures during various glutaraldehyde fixation processes combined with anti-calcification or decellularization treatments. However, SDS treatment preceding GA fixation changed the collagen fibers into a slightly condensed form, which degraded during transmission electron micrograph. The optimal methods and conditions for sodium dodecylsulfate (SDS) treatment need to be modified.