• Title/Summary/Keyword: JASS (Journal of Astronomy and Space Sciences)

Search Result 869, Processing Time 0.02 seconds

A CONSTRUCTION OF A SEMI-AUTOMATIC TELESCOPE FOR ECLIPSE TIMING OBSERVATIONS OF ECLIPSING BINARY STARS (식쌍성의 극심시각 관측을 위한 소형 반자동 망원경 관측시스템의 구성)

  • 이충욱;박성수;김천휘;변용익
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.2
    • /
    • pp.143-152
    • /
    • 2003
  • We constructed the photometric observation system with a small semi-automatic telescope for the systematic observations of eclipse timings of eclipsing binary stars. The system is consisted of a Paramount GT-1100s mount system, a Celestron 14 optical system, and a SBIG ST-8 camera. We developed the OBSTOOL S/W which controls the telescope and the CCD camera using the COM(Component Object Model) supported by the softwares, The Sky and MaximDL. The system performs photometric observations of a variable, comparison and check stars by moving the telescope to the chosen star separately in a similar way such as the method of photoelectric observation. We wrote pert scripts which enable a data handling pipeline for the obtained data to be classified by each of date, object and filter. And thus the images are easily preprocessed using the IRAF S/W package. Eclipse light curves of some eclipsing binary stars observed with this system are presented.

REDISCUSSION OF PER100 CHANGE OF THE CLOSE BINARY V65l CASSIOPEIAE (근접쌍성 V651 Cas의 공전주기 변화의 재논의)

  • 김천휘;이재우;이충욱;이동주;강영운
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2002
  • Observations of times of minimum lights of the eclipsing binary V65l Cas were carried out on the three nights from November 21-23, 2000. From our observations a total of seven new times of minimum lights was obtained. Through the analysis of photoelectric and CCD times of minima of V65l Cas including ours, the light time orbit due to a third body, which was propose by Kim & Lee (2000), was confirmed and improved. The resultant values for the period, semi-amplitude, and eccentricity of the light-time orbit were $6.^{y}3,\;0.^{d}0013$, and 0.78, respectively. The deduced marts range of the third body is . If the third body is $0.09M_{\odot}\;{\leq}\;M_3\;{\leq}\;0.20M_{\odot}\;for\;i_3\;{\geq}\;30^{\circ}$. If the third body suggested in V65l Cas system exists really and is a main-sequence star, it is located at the end of the main-sequence.

Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.331-342
    • /
    • 2017
  • To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.

THE STRUCTURES OF THE ALTERNATIVE CONCEPTIONS OF PRESERVICE SECONDARY TEACHERS ON SEASONAL CHANCES (계절 변화에 대한 예비 중등교사의 대안개념의 구조)

  • Oh, Jun-Young;Park, Sung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.69-88
    • /
    • 2005
  • This study was to understand the components that influence preservice secondary teachers' conceptions about 'seasonal changes' We selected 74 university science education students among whom 23 were in the second, 23 in the third, and 28 in the fourth year. The data collected from the paper-pencil test and individual interview with students. The results of this study show that the students had considerable apparent alternative conceptions, and that the 'distance theory' had most important effects on their alternative conceptions. It can be said that preservice secondary teachers' initial models of the seasonal change have their origin in their belief sets (specific theory) related to 'seasonal change', on the basis of which they can interpret their observations and cultural information with the constraints of a naive frame-work of physics. The structures and possible sources of their alternative conceptions for overcoming these alternative conceptions were also discussed. Implications for preservice science teacher education related to the results were discussed.

PREPROCESSING OF THE GPS RAW DATA FOR THE PRECISION ORBIT DETERMINATION BY DGPS TECHNIQUE (DGPS 방식에 의한 위성의 정밀궤도 결정을 위한 GPS 원시 자료 전처리)

  • 문보연;이정숙;이병선;김재훈;박은서;윤재철;노경민;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.163-172
    • /
    • 2002
  • This article investigates the problem of data preprocessing for the precision orbit determination (POD) of low earth orbit satellite using GPS .aw data. Several data preprocessing algorithms have been developed to edit the GPS data automatically such that outlier deletion, cycle slip identification and correction, and time tag error correction. The GPS data are precisely edited for the accuracy of POD. Some methods of data preprocessing are restricted to the rate of the collections of the pseudorange and carrier phase measurements. This study considers the preprocessing efficiency varied with the rate, the quality of receiver and the altitude of the satellite's orbit. We also propose the proper methods in accordance with the rate for single frequency and dual frequency receivers.

Comparison of Tropospheric Signal Delay Models for GNSS Error Simulation (GNSS 시뮬레이터 오차생성을 위한 대류층 신호지연량 산출 모델 비교)

  • Kim, Hye-In;Ha, Ji-Hyun;Park, Kwan-Dong;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.211-220
    • /
    • 2009
  • As one of the GNSS error simulation case studies, we computed tropospheric signal delays based on three well-known models (Hopfield, Modified Hopfield and Saastamoinen) and a simple model. In the computation, default meteorological values were used. The result was compared with the GIPSY result, which we assumed as truth. The RMS of a simple model with Marini mapping function was the largest, 31.0 cm. For the other models, the average RMS is 5.2 cm. In addition, to quantify the influence of the accuracy of meteorological information on the signal delay, we did sensitivity analysis of pressure and temperature. As a result, all models used this study were not very sensitive to pressure variations. Also all models, except for the modified Hopfield model, were not sensitive to temperature variations.

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

DEVELOPMENT OF REAL-TIME PRECISE POSITIONING ALGORITHM USING GPS L1 CARRIER PHASE DATA (GPS L1 반송파 위상을 이용한 실시각 정밀측위 알고리즘 구현)

  • 조정호;최병규;박종욱;박관동;임형철;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.377-384
    • /
    • 2002
  • We have developed Real-time Phase DAta processor(RPDAP) for GPS L1 carrie. And also, we tested the RPDAP's positioning accuracy compared with results of real time kinematic(RTK) positioning. While quality of the conventional L1 RTK positioning highly depend on receiving condition, the RPDAP can gives more stable positioning result because of different set of common GPS satellites, which searched by elevation mask angle and signal strength. In this paper, we demonstrated characteristics of the RPDAP compared with the L1 RTK technique. And we discussed several improvement ways to apply the RPDAP to precise real-time positioning using low-cost GPS receiver. With correcting the discussed weak points in new future, the RPDAP will be used in the field of precise real-time application, such as precise car navigation and precise personal location services.

Response of the Geomagnetic Activity Indices to the Solar Wind Parameters

  • Ahn, Byung-Ho;Park, Yoon-Kyung
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • This study attempts to show how the geomagnetic indices, AU, AL and Dst, respond to the interplanetary parameters, more specifically, the solar wind electric field VBz during southward interplanetary magnetic field (IMF) period. The AU index does not seem to respond linearly to the variation of southward IMF. Only a noticeable correlation between the AU and VBz is shown during summer, when the ionospheric conductivity associated with the solar EUV radiation is high. It is highly likely that the effect of electric field on the eastward electrojet intensification is only noticeable whenever the ionospheric conductivity is significantly enhanced during summer. Thus, one should be very cautious in employing the AU as a convection index during other seasons. The AL index shows a significantly high correlation with VBz regardless of season. Considering that the auroral electrojet is the combined result of electric field and ionospheric conductivity, the intensification of these two quantities seems to occur concurrently during southward IMF period. This suggests that the AL index behaves more like a convection index rather than a substorm index as far as hourly mean AL index is concerned. Contrary to the AU index, the AL index does not register the maximum value during summer for a given level of VBz. It has something to do with the findings that discrete auroras are suppressed in sunlight hemisphere (Newell et al. 1996), thus reducing the ionospheric conductivity during summer. As expected, the Dst index tends to become more negative as VBz gets intensified. However, the Dst index (nT) is less than or equal to 15VBz(mV/m) + 50(Bz < 0). It indicates that VBz determines the lower limit of the storm size, while another factor(s), possibly substorm, seems to get further involved in intensifying storms. Although it has not been examined in this study, the duration of southward IMF would also be a factor to be considered in determining the size of a storm.

A Analysis for Calibration Site Selection of SAR Satellite (SAR 위성 검보정 사이트 선택을 위한 분석)

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.659-666
    • /
    • 2009
  • CALVAL (Calibration & Validation) shall consider payloads characteristics because satellites have one and/or several payloads in order to perform their various missions. SAR satellite, one of various satellite, shall need to use special ground targets, which can reflect the radar signal to the satellite, because it can see objects with reflected radar signal. Therefore, the special ground targets, which are called generally reflector(corner reflector is the one of them) shall be installed and constructed on the ground path. The satellite must access the targets on that path. To accomplish successful calibration, the CALVAL site including corner reflectors will be surveyed and analyzed using various environment characteristics. In this paper, CALVAL site including point targets(corner reflector) for absolute radiometric calibration except one including distributed targets for relative radiometric calibration has been deeply considered.