• 제목/요약/키워드: JAK2/STAT3

검색결과 47건 처리시간 0.029초

마그놀롤의 HDF세포에서 Nrf2-SOCS3-Jak2-STAT3에 의한 UVB 유래 염증데미지 조절 (The Effect of Magnolol on UVB-induced Inflammation Damage Control via the Nrf2-SOCS3-Jak2-STAT3 Pathway in Human Dermal Fibroblasts)

  • 남영선;지주리
    • 생명과학회지
    • /
    • 제30권10호
    • /
    • pp.867-876
    • /
    • 2020
  • 본 연구는 magnolol에 의한 UVB 유도 세포 손상의 복구를 조사하였다. 우리는 약물재배치를 위해 STAT3 기작을 분석하였고, magnolol HDF 세포에서 세포 생존력을 향상시키며, STAT3의 억제제인 것을 확인하였다. IL-6, UVB 및 IFNγ로 처리 된 HDF 세포는 Jak2 및 인산화 된 STAT3 (p-STAT3)의 높은 발현을 나타냈다. Magnolol 의 처리는 UVB 유도 세포에서 Jak2 및 p-STAT3의 발현을 감소시킬 수 있었다. 또한, UVB- 손상된 세포 성장은 용량 의존적 방식으로 재 활성화 및 magnolol 과의 상관 관계가 상당히 증가되었다. UVB 처리 된 HDF 세포에 대한 AG490 (Jak2 억제제) 처리와 비교하여, 세포 증식이 유의하게 증가 하였다. 우리는 AG490 및 magnolol 이 TNF-α 농도를 감소시키는 것을 확인했다. Western blot (단백질 수준)은 오직 magnolol 처리 된 세포에서만 Jak2 및 p-STAT3 발현의 감소를 나타냈고, Jak2, p-STAT3 및 SOCS3의 발현은 또한 magnolol 처리한 세포에서만 증가하였다. 세포를 magnolol 및 ML385 (NRF2 억제제)로 동시 처리시 세포 증식 및 NRF2 발현을 감소시켰다. MMP9의 양은 magnolol 및 ML385 로의 처리에 의해 증가되었다. 종합적으로, 이들 결과는 NRF2, SOCS3, Jak2 및 STAT3의 발현을 조절함으로써 UVB 손상 후 세포를 회복시키는데 있어 magnolol의 가능성을 입증한다.

난소암에서 봉독이 세포자멸사와 JAK2/STAT3 Pathway의 억제에 미치는 영향 (Effect of Bee Venom Death Receptor Dependent Apoptosis and JAK2/STAT3 Pathway in the Ovarian Cancer)

  • 안병준;송호섭
    • Journal of Acupuncture Research
    • /
    • 제29권1호
    • /
    • pp.47-59
    • /
    • 2012
  • 목적 : 이 연구는 봉독이 사람의 난소암 세포인 SKOV3와 PA-1에서 death receptor의 발현을 높여 세포자멸사를 촉진함으로써 암세포의 성장을 억제하는지 밝히고자 하였다. 방법 : 난소암의 세포자멸사의 관찰에는 DAPI, TUNEL staining assay를 시행하였으며, 세포자멸사 조절 단백질의 변동 관찰에는 western blot analysis를 시행하였고, 난소암 세포에서 death receptor의 변화를 관찰하기 위해 RT-PCR analysis를 시행하였다. 결과 : 1. DAPI, TUNEL staining assay 결과, 봉독은 투여량에 따라 세포자멸사의 유도를 통해 SKOV3와 PA-1 난소암세포의 증식을 억제하였고, 세포자멸사와 동반하여 DR4와 DR6의 발현이 두 암세포 모두에서 증가하였고, DR3의 출현은 PA-1 세포에서 증가하였다. 2. Death Receptor의 발현 증가에 따라 caspase-3, 8, 9 and Bax를 포함하는 세포자멸사 촉진 단백질의 발현이 동반하여 상승하였고 JAK2, STAT3의 인산화와 Bcl-2의 발현은 억제되었다. 3. siRNA 처리 시 봉독에 의한 DR3, DR4, DR6 발현증가와 STAT3의 활성억제가 역전되었다. 결론 : 이러한 결과는 봉독이 난소암 세포에서 DR3, DR4, DR6의 증가와 JAK2/STAT3 pathway의 억제를 통하여 세포자멸사를 유발한다는 것을 시사하며, 난소암의 예방과 치료에 효과적으로 활용될 수 있을 것으로 기대된다.

Licochalcone H Induces Cell Cycle Arrest and Apoptosis in Human Skin Cancer Cells by Modulating JAK2/STAT3 Signaling

  • Park, Kyung-Ho;Joo, Sang Hoon;Seo, Ji-Hye;Kim, Jumi;Yoon, Goo;Jeon, Young-Joo;Lee, Mee-Hyun;Chae, Jung-Il;Kim, Woo-Keun;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.72-79
    • /
    • 2022
  • Licochalcone H (LCH) is a phenolic compound synthetically derived from licochalcone C (LCC) that exerts anticancer activity. In this study, we investigated the anticancer activity of LCH in human skin cancer A375 and A431 cells. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay was used to evaluate the antiproliferative activity of LCH. Cell cycle distribution and the induction of apoptosis were analyzed by flow cytometry. Western blotting assays were performed to detect the levels of proteins involved in cell cycle progression, apoptosis, and the JAK2/STAT3 signaling pathway. LCH inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay revealed that LCH induced apoptosis, and the LCH-induced apoptosis was accompanied by cell cycle arrest in the G1 phase. Western blot analysis showed that the phosphorylation of JAK2 and STAT3 was decreased by treatment with LCH. The inhibition of the JAK2/STAT3 signaling pathway by pharmacological inhibitors against JAK2/STAT3 (cryptotanshinone (CTS) and S3I-201) simulated the antiproliferative effect of LCH suggesting that LCH induced apoptosis by modulating JAK2/STAT3 signaling.

Procaine Attenuates Pain Behaviors of Neuropathic Pain Model Rats Possibly via Inhibiting JAK2/STAT3

  • Li, Donghua;Yan, Yurong;Yu, Lingzhi;Duan, Yong
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.489-494
    • /
    • 2016
  • Neuropathic pain (NPP) is the main culprit among chronic pains affecting the normal life of patients. Procaine is a frequently-used local anesthesia with multiple efficacies in various diseases. However, its role in modulating NPP has not been reported yet. This study aims at uncovering the role of procaine in NPP. Rats were pretreated with procaine by intrathecal injection. Then NPP rat model was induced by sciatic nerve chronic compression injury (CCI) and behavior tests were performed to analyze the pain behaviors upon mechanical, thermal and cold stimulations. Spinal expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was detected by qRT-PCR and western blot. JAK2 was also overexpressed in procaine treated model rats for behavior tests. Results showed that procaine pretreatment improved the pain behaviors of model rats upon mechanical, thermal and cold stimulations, with the best effect occurring on the $15^{th}$ day post model construction (p<0.05). Procaine also inhibited JAK2 and STAT3 expression in both mRNA (p<0.05) and protein levels. Overexpression of JAK2 increased STAT3 level and reversed the improvement effects of procaine in pain behaviors (p<0.01). These findings indicate that procaine is capable of attenuating NPP, suggesting procaine is a potential therapeutic strategy for treating NPP. Its role may be associated with the inhibition on JAK2/STAT3 signaling.

Janus Kinase 2 Inhibitor AG490 Inhibits the STAT3 Signaling Pathway by Suppressing Protein Translation of gp130

  • Seo, In-Ae;Lee, Hyun-Kyoung;Shin, Yoon-Kyung;Lee, Sang-Hwa;Seo, Su-Yeong;Park, Ji-Wook;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권2호
    • /
    • pp.131-138
    • /
    • 2009
  • The binding of interleukin-6 (IL-6) cytokine family ligands to the gp130 receptor complex activates the Janus kinase (JAK)/ signal transducer and activator of transcription 3 (STAT3) signal transduction pathway, where STA T3 plays an important role in cell survival and tumorigenesis. Constitutive activation of STAT3 has been frequently observed in many cancer tissues, and thus, blocking of the gp130 signaling pathway, at the JAK level, might be a useful therapeutic approach for the suppression of STAT3 activity, as anticancer therapy. AG490 is a tyrphostin tyrosine kinase inhibitor that has been extensively used for inhibiting JAK2 in vitro and in vivo. In this study, we demonstrate a novel mechanism associated with AG490 that inhibits the JAK/STAT3 pathway. AG490 induced downregulation of gp130, a common receptor for the IL-6 cytokine family compounds, but not JAK2 or STAT3, within three hours of exposure. The downregulation of gp130 was not caused by enhanced degradation of gp130 or by inhibition of mRNA transcription. It most likely occurred by translation inhibition of gp130 in association with phosphorylation of the eukaryotic initiation factor-2 a. The inhibition of protein synthesis of gp130 by AG490 led to immediate loss of mature gp130 in cell membranes, due to its short half-life, thereby resulting in reduction in the STAT3 response to IL-6. Taken together, these results suggest that AG490 blocks the STAT3 activation pathway via a novel pathway.

JAK/STAT 신호전달 경로를 통한 LPS 유도 RAW 264.7 세포의 염증에 대한 노니의 항염증 효과 (Anti-inflammatory Effect of Morinda citrifolia on LPS-induced Inflammation in RAW 264.7 Cells Through the JAK/STAT Signaling Pathway)

  • 조범길;방인석
    • 생명과학회지
    • /
    • 제32권2호
    • /
    • pp.125-134
    • /
    • 2022
  • 본 연구는 노니(Morinda citrifolia)에 함유된 주요 생리활성물질이 RAW 264.7 세포에서 JAK/STAT 신호전달 경로를 통하여 항염증 작용에 관여하는 것을 조사하였다. 건조된 M. citrifolia 열매의 MeOH 추출에 의한 유기용매의 순차 분획에서 얻은 EtOAc 분획물(Mc-EtOAc)에서 가장 높은 항산화 활성을 확인하였고, H2O2로 유도된 RAW 264.7 세포의 산화적 스트레스에 대한 세포보호 효과는 처리 농도의존적으로 세포독성을 차단하였다. LPS 처리로 71.6%의 RAW 264.7 세포 생존율에서 240 ㎍/ml의 Mc-EtOAc를 전처리한 군에서 84.5%의 세포 생존율 증가를 보였다. LPS로 유도된 RAW 264.7 세포의 NO 생성 저해활성은 240 ㎍/ml의 Mc-EtOAc에서 양성 대조군의 절반 수준으로 NO의 생성양을 감소시켰다. Mc-EtOAc 처리로 iNOS의 발현량은 농도의존적으로 유의하게 감소하였고, COX-2의 발현은 LPS 유도로 3배 정도로 증가되었으나, 120, 240 ㎍/ml의 Mc-EtOAc를 전처리시 농도의존적으로 유의하게 감소시켰다. 또한 pro-inflammatory cytokine IL-1β와 TNF-α의 mRNA 발현도 억제하였다. 이러한 Mc-EtOAc의 항염증 작용이 상위 신호전달 경로인 JAK/STAT 신호전달 경로 통해 일어나지를 조사한 결과, Mc-EtOAc의 전처리로 LPS로 유도된 RAW 264.7 세포에서 pJAK1과 pSTAT3의 인산화 정도가 유의성 있게 감소하였다. 따라서 RAW 264.7 세포에서 Mc-EtOAc의 항염증 효과는 JAK1/STAT3 신호전달 경로를 통해 염증반응을 억제하는 것으로 사료된다.

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.

Hydroxyzine Induces Cell Death in Triple-Negative Breast Cancer Cells via Mitochondrial Superoxide and Modulation of Jak2/STAT3 Signaling

  • Shakya, Rajina;Park, Gyu Hwan;Joo, Sang Hoon;Shim, Jung-Hyun;Choi, Joon-Seok
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.585-592
    • /
    • 2022
  • Treatment of triple-negative breast cancer (TNBC) has been limited due to the lack of molecular targets. In this study, we evaluated the cytotoxicity of hydroxyzine, a histamine H1 receptor antagonist in human triple-negative breast cancer BT-20 and HCC-70 cells. Hydroxyzine inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay showed that hydroxyzine induced apoptosis. The hydroxyzine-induced apoptosis was accompanied down-regulation of cyclins and CDKs, as well as the generation of reactive oxygen species (ROS) without cell cycle arrest. The effect of hydroxyzine on the induction of ROS and apoptosis on TNBC cells was prevented by pre-treatment with ROS scavengers, N-acetyl cysteine or Mito-TEMPO, a mitochondria-targeted antioxidant, indicating that an increase in the generation of ROS mediated the apoptosis induced by hydroxyzine. Western blot analysis showed that hydroxyzine-induced apoptosis was through down-regulation of the phosphorylation of JAK2 and STAT3 by hydroxyzine treatment. In addition, hydroxyzine induced the phosphorylation of JNK and p38 MAPK. Our results indicate that hydroxyzine induced apoptosis via mitochondrial superoxide generation and the suppression of JAK2/STAT3 signaling.

p38 mitogen-activated protein kinase contributes to TNFα-induced endothelial tube formation of bone-marrow-derived mesenchymal stem cells by activating the JAK/STAT/TIE2 signaling axis

  • Sukjin Ou;Tae Yoon Kim;Euitaek Jung;Soon Young Shin
    • BMB Reports
    • /
    • 제57권5호
    • /
    • pp.238-243
    • /
    • 2024
  • Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into endothelial cells in an inflammatory microenvironment. However, the regulatory mechanisms underlying this process are not entirely understood. Here, we found that TIE2 in BM-MSCs was upregulated at the transcriptional level after stimulation with tumor necrosis factor-alpha (TNFα), a major pro-inflammatory cytokine. Additionally, the STAT-binding sequence within the proximal region of TIE2 was necessary for TNFα-induced TIE2 promoter activation. TIE2 and STAT3 knockdown reduced TNFα-induced endothelial tube formation in BM-MSCs. Among the major TNFα-activated MAP kinases (ERK1/2, JNK1/2, and p38 MAPK) in BM-MSCs, only inhibition of the p38 kinase abrogated TNFα-induced TIE2 upregulation by inhibiting the JAK-STAT signaling pathway. These findings suggest that p38 MAP contributes to the endothelial differentiation of BM-MSCs by activating the JAK-STAT-TIE2 signaling axis in the inflammatory microenvironment.

Luteolin Arrests Cell Cycling, Induces Apoptosis and Inhibits the JAK/STAT3 Pathway in Human Cholangiocarcinoma Cells

  • Aneknan, Ploypailin;Kukongviriyapan, Veerapol;Prawan, Auemduan;Kongpetch, Sarinya;Sripa, Banchob;Senggunprai, Laddawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.5071-5076
    • /
    • 2014
  • Cholangiocarcinoma (CCA) is one of the aggressive cancers with a very poor prognosis. Several efforts have been made to identify and develop new agents for prevention and treatment of this deadly disease. In the present study, we examined the anticancer effect of luteolin on human CCA, KKU-M156 cells. Sulforhodamine B assays showed that luteolin had potent cytotoxicity on CCA cells with IC50 values of $10.5{\pm}5.0$ and $8.7{\pm}3.5{\mu}M$ at 24 and 48 h, respectively. Treatment with luteolin also caused a concentration-dependent decline in colony forming ability. Consistent with growth inhibitory effects, luteolin arrested cell cycle progression at the G2/M phase in a dose-dependent manner as assessed by flow cytometry analysis. Protein expression of cyclin A and Cdc25A was down-regulated after luteolin treatment, supporting the arrest of cells at the G2/M boundary. Besides evident G2/M arrest, luteolin induced apoptosis of KKU-M156 cells, demonstrated by a distinct sub-G1 apoptotic peak and fluorescent dye staining. A decrease in the level of anti-apoptotic Bcl-2 protein was implicated in luteolin-induced apoptosis. We further investigated the effect of luteolin on JAK/STAT3, which is an important pathway involved in the development of CCA. The results showed that interleukin-6 (IL-6)-induced JAK/STAT3 activation in KKU-M156 cells was suppressed by treatment with luteolin. Treatment with a specific JAK inhibitor, AG490, and luteolin diminished IL-6-stimulated CCA cell migration as assessed by wound healing assay. These data revealed anticancer activity of luteolin against CCA so the agent might have potential for CCA prevention and therapy.