• 제목/요약/키워드: JAK1-STAT1 signaling

검색결과 50건 처리시간 0.025초

Transcriptional Properties of the BMP, $TGF-\beta$, RTK, Wnt, Hh, Notch, and JAK/STAT Signaling Molecules in Mouse Embryonic Stem Cells

  • Rho Jeung-Yon;Bae Gab-Yong;Chae Jung-Il;Yu Kweon;Koo Deog-Bon;Lee Kyung-Kwang;Han Yong-Mahn
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.143-156
    • /
    • 2006
  • Major characteristics of embryonic stem cells (ESCs) are sustaining of sternness and pluripotency by self-renewal. In this report, transcriptional profiles of the molecules in the developmentally important signaling pathways including Wnt, BMP4, $TGF-\beta$, RTK, Hh, Notch, and JAK/STAT signaling pathways were investigated to understand the self-renewal of mouse ESCs (mESCs), J1 line, and compared with the NIH3T3 cell line and mouse embryonic fibroblast (MEF) cells as controls. In the Wnt signaling pathway, the expression of Wnt3 was seen widely in mESCs, suggesting that the ligand may be an important regulator for self-renewal in mESCs. In the Hh signaling pathway, the expression of Gli and N-myc were observed extensively in mESCs, whereas the expression levels of in a Shh was low, suggesting that intracellular molecules may be essential for the self-renewal of mESCs. IGF-I, IGF-II, IGF-IR and IGF-IIR of RTK signaling showed a lower expression in mESCs, these molecules related to embryo development may be restrained in mESCs. The expression levels of the Delta and HESS in Notch signaling were enriched in mESCs. The expression of the molecules related to BMP and JAK-STAT signaling pathways were similar or at a slightly lower level in mESCs compared to those in MEF and NIH3T3 cells. It is suggested that the observed differences in gene expression profiles among the signaling pathways may contribute to the self-renewal and differentiation of mESCs in a signaling-specific manner.

HPAI-resistant Ri chickens exhibit elevated antiviral immune-related gene expression

  • Thi Hao Vu;Jubi Heo;Yeojin Hong;Suyeon Kang;Ha Thi Thanh Tran;Hoang Vu Dang;Anh Duc Truong;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.13.1-13.11
    • /
    • 2023
  • Background: Highly pathogenic avian influenza viruses (HPAIVs) is an extremely contagious and high mortality rates in chickens resulting in substantial economic impact on the poultry sector. Therefore, it is necessary to elucidate the pathogenic mechanism of HPAIV for infection control. Objective: Gene set enrichment analysis (GSEA) can effectively avoid the limitations of subjective screening for differential gene expression. Therefore, we performed GSEA to compare HPAI-infected resistant and susceptible Ri chicken lines. Methods: The Ri chickens Mx(A)/BF2(B21) were chosen as resistant, and the chickens Mx(G)/BF2(B13) were selected as susceptible by genotyping the Mx and BF2 genes. The tracheal tissues of HPAIV H5N1 infected chickens were collected for RNA sequencing followed by GSEA analysis to define gene subsets to elucidate the sequencing results. Results: We identified four differentially expressed pathways, which were immune-related pathways with a total of 78 genes. The expression levels of cytokines (IL-1β, IL-6, IL-12), chemokines (CCL4 and CCL5), type interferons and their receptors (IFN-β, IFNAR1, IFNAR2, and IFNGR1), Jak-STAT signaling pathway genes (STAT1, STAT2, and JAK1), MHC class I and II and their co-stimulatory molecules (CD80, CD86, CD40, DMB2, BLB2, and B2M), and interferon stimulated genes (EIF2AK2 and EIF2AK1) in resistant chickens were higher than those in susceptible chickens. Conclusions: Resistant Ri chickens exhibit a stronger antiviral response to HPAIV H5N1 compared with susceptible chickens. Our findings provide insights into the immune responses of genetically disparate chickens against HPAIV.

Role of IFNLR1 gene in PRRSV infection of PAM cells

  • Qin, Ming;Chen, Wei;Li, Zhixin;Wang, Lixue;Ma, Lixia;Geng, Jinhong;Zhang, Yu;Zhao, Jing;Zeng, Yongqing
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.39.18-39.18
    • /
    • 2021
  • Background: Interferon lambda receptor 1 (IFNLR1) is a type II cytokine receptor that clings to interleukins IL-28A, IL29B, and IL-29 referred to as type III IFNs (IFN-λs). IFN-λs act through the JAK-STAT signaling pathway to exert antiviral effects related to preventing and curing an infection. Although the immune function of IFN-λs in virus invasion has been described, the molecular mechanism of IFNLR1 in that process is unclear. Objectives: The purpose of this study was to elucidate the role of IFNLR1 in the pathogenesis and treatment of porcine reproductive and respiratory syndrome virus (PRRSV). Methods: The effects of IFNLR1 on the proliferation of porcine alveolar macrophages (PAMs) during PRRSV infection were investigated using interference and overexpression methods. Results: In this study, the expressions of the IFNLR1 gene in the liver, large intestine, small intestine, kidney, and lung tissues of Dapulian pigs were significantly higher than those in Landrace pigs. It was determined that porcine IFNLR1 overexpression suppresses PRRSV replication. The qRT-PCR results revealed that overexpression of IFNLR1 upregulated antiviral and IFN-stimulated genes. IFNLR1 overexpression inhibits the proliferation of PAMs and upregulation of p-STAT1. By contrast, knockdown of IFNLR1 expression promotes PAMs proliferation. The G0/G1 phase proportion in IFNLR1-overexpressing cells increased, and the opposite change was observed in IFNLR1-underexpressing cells. After inhibition of the JAK/STAT signaling pathway, the G2/M phase proportion in the IFNLR1-overexpressing cells showed a significant increasing trend. In conclusion, overexpression of IFNLR1 induces activation of the JAK/STAT pathway, thereby inhibiting the proliferation of PAMs infected with PRRSV. Conclusion: Expression of the IFNLR1 gene has an important regulatory role in PRRSV-infected PAMs, indicating it has potential as a molecular target in developing a new strategy for the treatment of PRRSV.

Role of STAT3 as a Molecular Adaptor in Cell Growth Signaling: Interaction with Ras and other STAT Proteins

  • Song, Ji-Hyon;Park, Hyon-Hee;Park, Hee-Jeong;Han, Mi-Young;Kim, Sung-Hoon;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제34권5호
    • /
    • pp.484-488
    • /
    • 2001
  • STATs are proteins with a dual function: signal transducers in the cytoplasm and transcriptional activators in the nucleus. Among the six known major STATs (STAT1-6), STAT3 has been implicated in the widest range of signaling pathways that regulate cell growth and differentiation. As a part of our on-going investigation on the pleiotropic functions of STAT proteins, we examined the role of STAT3 as a molecular adaptor that links diverse cell growth signaling pathways. We observed that STAT3 can be specifically activated by multiple cytokines, such as IL-3, in transformed fibroblasts and IL-4 or IFN-$\gamma$ in primary immune cells, respectively. The selective activation of STAT3 in H-ras-transformed NIH3T3 cells is associated with an increased expression of phosphoserioe STAT3 in these cells, compared to the parental cells. Notably phosphoresine-STAT3 interacts with oncogenic ras, shown by immunoprecipitation and Western blots. The results suggest the role of STAT3 in rasinduced cellular transformation as a molecular adaptor linking the Jak/STAT and Ras/MAPK pathways. In primary immune cells, IL-4 and IFN-$\gamma$ each induced (in addition to the characteristic STAT6 and STAT1 homodimers) the formation of STAT3-containing complexes that bind to GAS probes, which correspond to the $Fe{\varepsilon}$ Rll and $Fe{\gamma}$ RI promoter sequences, respectively. Since IL-4 and IFN-$\gamma$ are known to counter-regulate the expression of these genes, the ability of STAT3 to form heterodimeric complexes with STAT6 or STAT1 implies its role in the fine-tuned control of genes that are regulated by IL-4 and IFN-$\gamma$.

  • PDF

인진청간탕(茵蔯淸肝湯)이 HepG2 cell의 인터페론 신호전달계에 미치는 영향 (The Effects of Injinchunggantang on Interferon Signaling Pathway of HepG2 Cells)

  • 이종훈;김영철;이장훈;우홍정
    • 대한한방내과학회지
    • /
    • 제26권1호
    • /
    • pp.74-92
    • /
    • 2005
  • Objectives/Methods : To analyze the effect of Injinchunggantang(IJCGT) to Interferon-${\alpha}/{\beta}$ signal transmission system in HepG2 cells, HepG2 Cell were treated with IJCGT. Also, revelation of MxA, 2'5'-OAS mRNA leaded by Interferon-${\alpha}/{\beta}$ and revelation and activation of Jak1, TYK1, and STAT 1, all main signal transmission factors, were analyzed. Results : The analysis resulted in the following 1. With interferon ${\alpha}/{\beta}$ there was no affect cell propagation of Hep G2 cells. With IJCGT alone, cell propagation of HepG2 was promoted, and cell propagation control function was recovered. 2. With interferon ${\alpha}/{\beta}$ cell death was unaffected. With IJCGT apoptosis of HepG2 cell was restrained, and the cell's reaction to interferon was unaffected. 3. With interferon ${\alpha}/{\beta}$ treatment mRNA revelation of MxA and 2'5'-OAS was induced. When HepG2 cells were injected with IJCGT without interferon ${\alpha}/{\beta}$ treatment, mRNA revelation of MxA and 2'5'-OAS increased in proportion to the treatment density. With pre-treatment of IJCGT, leaded with interferon ${\alpha}/{\beta}$, promoted revelation of MxA, 2'5' -OAS mRNA. 4. Though mRNA revelation of lakl, TYK1 and STAT1 was unaffected with IJCGT, activation of STAT1 was promoted with an increase of phosphorylation of STAT1 protein. With pre-treatment of IJCGT, Jak1, TYK2, STAT1 phosphorylation, leaded with interferon, strengthened. 5. TNF-a, IL-1b and LPS present, revelation of MxA and 2'5'-OAS mRNA leaded by interferon was restrained when HepG2 cells were treated with IJCGT, and the interferon signal transmission system restraint action leaded by inflammatory cytokines was moderated. Conclusion : These results support a role for IJGCT in promotion of anti-virus action through maintainance of the liver's sensibility toward interferon. A clinical study of an interferon treated patient treated also with IJGCT is needed to determine its efficacy.

  • PDF

Angelica Sinensis Polysaccharide Induces Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells

  • Wang, Lu;Jiang, Rong;Song, Shu-Dan;Hua, Zi-Sen;Wang, Jian-Wei;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3715-3721
    • /
    • 2015
  • Leukemia is a clonal disorder with blocked normal differentiation and cell death of hematopoietic progenitor cells. Traditional modalities with most used radiation and chemotherapy are nonspecific and toxic which cause adverse effects on normal cells. Differentiation inducing therapy forcing malignant cells to undergo terminal differentiation has been proven to be a promising strategy. However, there is still scarce of potent differentiation inducing agents. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), has potential differentiation inducing activity in human chronic erythro-megakaryoblastic leukemia K562 cells. MTT assays and flow cytometric analysis demonstrated that ASP inhibited K562 cell proliferation and arrested the cell cycle at the G0/G1 phase. ASP also triggered K562 cells to undergo erythroid differentiaton as revealed by morphological changes, intensive benzidine staining and hemoglobin colorimetric reaction, as well as increased expression of glycophorin A (GPA) protein. ASP induced redistribution of STAT5 protein from the cytoplasm to the nucleus. Western blotting analysis further identified that ASP markedly sensitized K562 cells to exogenous erythropoietin (EPO) by activating EPO-induced JAK2/STAT5 tyrosine phosphorylation, thus augmenting the EPO-mediated JAK2/STAT5 signaling pathway. On the basis of these findings, we propose that ASP might be developed as a potential candidate for chronic myelogenous leukemia inducing differentiation treatment.

SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

  • Ryu, Ji-Yoon;Oh, Jiyoung;Kim, Su-Min;Kim, Won-Gi;Jeong, Hana;Ahn, Shin-Ae;Kim, Seol-Hee;Jang, Ji-Young;Yoo, Byong Chul;Kim, Chul Woo;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제55권4호
    • /
    • pp.198-203
    • /
    • 2022
  • As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.

Silencing of Suppressor of Cytokine Signaling-3 due to Methylation Results in Phosphorylation of STAT3 in Imatinib Resistant BCR-ABL Positive Chronic Myeloid Leukemia Cells

  • Al-Jamal, Hamid AN;Jusoh, Siti Asmaa Mat;Yong, Ang Cheng;Asan, Jamaruddin Mat;Hassan, Rosline;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4555-4561
    • /
    • 2014
  • Background: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib. Materials and Methods: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and $IC_{50}$ values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting. Results: The $IC_{50}$ for imatinib on K562 was 362nM compared to 3,952nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down-regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562. Conclusions: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

Molecular Mechanism of NO-induced Cell Death of PC12 Cells by $IFN{\gamma}\;and\;TNF{\alpha}$

  • Yi, Seh-Yoon;Han, Seon-Kyu;Lee, Jee-Yeon;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.196-202
    • /
    • 2005
  • Nitric oxide (NO) is a small, diffusible, and highly reactive molecule, which plays dichotomous regulatory roles under physiological and pathological conditions. NO promotes apoptosis in some cells, and inhibits apoptosis in other cells. In the present study, we attempted to characterize the NO signaling pathway and cellular response in PC12 cells treated with cytokines. $IFN{\gamma}\;and\;TNF{\alpha}$ treatment resulted in a synergistic increase of nitrite accumulation, with the induction of inducible nitric oxide synthase (iNOS) in the PC12 cells. Moreover, as nitrite concentration increased, cell viability decreased. In order to explore MAP kinase involvement in nitric oxide production resultant from $IFN{\gamma}\;and\;TNF{\alpha}$ stimulation, we measured the activation of MAP kinase using specific MAP kinase inhibitors. PC12 cells pretreated with SB203580, a p38 MAP kinase-specific inhibitor, resulted in the inhibition of iNOS expression and NO production. However, PD98059, an ERK/MAP kinase-specific inhibitor, was not observed to exert such an effect. In addition, Stat1 activated by $IFN{\gamma}\;and\;TNF{\alpha}$ was interacted with p38 MAPK. These data suggest that p38 MAP kinase mediates cytokine-mediated iNOS expression in the PC12 cells, and Jak/Stat pathway interferes with p38 MAPK signaling pathway.