• Title/Summary/Keyword: J2me

검색결과 423건 처리시간 0.025초

CsI:Na 결정 육성과 섬광 특성 (Crystal growth and scintillation properties of CsI:Na)

  • 천종규;김성환;김홍주
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.443-448
    • /
    • 2010
  • In this work, the scintillation properties of CsI:Na crystal were investigated as radiation detection sensor. This scintillation material was grown by a 2-zone vertical Bridgman method. Under X-ray excitation the crystal shows a broad emission band between 280 nm and 690 nm wavelength range, peaking at 413 nm. Energy resolution for $^{137}Cs$ 662 keV $\gamma$-rays of the crystal was measured to be 6.9 %(FWHM). At room temperature, the crystal exhibits three exponential decay time components. The fast and major component of scintillation time profile of the crystal emission decays with a 457 ns time constant. Absolute light yield of the crystal was estimated to be 53,000 ph/MeV using LAAPD. The sample crystal shows proportionality of 30 % in the measured energy range from 31 to 1,333 keV. And the $\alpha/\beta$ ratio of the crystal was 0.14.

모바일 지리정보시스템에서 보안을 고려한 설계 (Design for Security in Mobile GIS)

  • 이상철;이충호;오영환;임기욱;배해영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (상)
    • /
    • pp.81-84
    • /
    • 2001
  • PC 환경이 아닌 무선 인터넷 환경에서 제공되는 Mobile GIS(Geographic Information System)는 시간과 공간의 제약을 극복하고 실시간으로 지리정보를 얻을 수 있는 장점을 가지고 있으나, 사용자의 무선단말기와 서버 사이에 접속이 유지되어 있어야만 무선으로 GIS 서비스를 이용할 수 있다. 이는 현재 국내 무선 네트워크의 느린 속도와 비싼 이용 요금을 감안하면 Mobile GIS 가 대중화되는데 장애요인이 되고있다. 그리고 무선 인터넷 서비스가 급격히 증가하면서 Mobile GIS는 보안상 약점을 드러낼 것으로 예측된다. 그러므로 본 논문에서는 공개된 불특정다수의 무선 네트워크 환경에서 발생할 수 있는 보안의 피해와 그에 따른 기본적 Mobile Security 서비스에 대해 알아보고, 정보보호 입장에서 Mobile Database 를 연구하였다. 또한 Mobile GIS 를 위한 WAP 게이트웨이에서 공간데이터의 유출 가능성을 발견하였고, 이를 위한 해결책으로 J2ME 의 Pre-verification 기능과 종단간 암호화 (End-to-End Security) 기능을 Mobile GIS 설계에 적용하여 무선 환경에서 동적인 지도서비스와 더불어 공간 데이터의 보안을 유지할 수 있는 기법을 제시하였다. 이 연구를 통해 대역폭(Bandwidth)의 한계를 지닌 개방적 무선환경에서 Mobile GIS와 같은 컨텐츠 프라이버시(Contents Privacy) 보호가 요구되는 분야에 응용될 수 있으리라 기대된다.

  • PDF

Monte Carlo approach for calculation of mass energy absorption coefficients of some amino acids

  • Bozkurt, Ahmet;Sengul, Aycan
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3044-3050
    • /
    • 2021
  • This study offers a Monte Carlo alternative for computing mass energy absorption coefficients of any material through calculation of photon energy deposited per mass of the sample and the energy flux obtained inside a sample volume. This approach is applied in this study to evaluate mass energy absorption coefficients of some amino acids found in human body at twenty-eight different photon energies between 10 keV and 20 MeV. The simulations involved a pencil beam source modeled to emit a parallel beam of mono-energetic photons toward a 1 mean free path thick sample of rectangular parallelepiped geometry. All the components in the problem geometry were surrounded by a 100 cm vacuum sphere to avoid any interactions in materials other than the absorber itself. The results computed using the Monte Carlo radiation transport packages MCNP6.2 and GAMOS5.1 were checked against the theoretical values available from the tables of XMUDAT database. These comparisons indicate very good agreement and support the conclusion that Monte Carlo technique utilized in this fashion may be used as a computational tool for determining the mass energy absorption coefficients of any material whose data are not available in the literature.

Impact of aperture-thickness on the real-time imaging characteristics of coded-aperture gamma cameras

  • Park, Seoryeong;Boo, Jiwhan;Hammig, Mark;Jeong, Manhee
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1266-1276
    • /
    • 2021
  • The mask parameters of a coded aperture are critical design features when optimizing the performance of a gamma-ray camera. In this paper, experiments and Monte Carlo simulations were performed to derive the minimum detectable activity (MDA) when one seeks a real-time imaging capability. First, the impact of the thickness of the modified uniformly redundant array (MURA) mask on the image quality is quantified, and the imaging of point, line, and surface radiation sources is demonstrated using both cross-correlation (CC) and maximum likelihood expectation maximization (MLEM) methods. Second, the minimum detectable activity is also derived for real-time imaging by altering the factors used in the image quality assessment, consisting of the peak-to-noise ratio (PSNR), the normalized mean square error (NMSE), the spatial resolution (full width at half maximum; FWHM), and the structural similarity (SSIM), all evaluated as a function of energy and mask thickness. Sufficiently sharp images were reconstructed when the mask thickness was approximately 2 cm for a source energy between 30 keV and 1.5 MeV and the minimum detectable activity for real-time imaging was 23.7 MBq at 1 m distance for a 1 s collection time.

Performance prediction of gamma electron vertex imaging (GEVI) system for interfractional range shift detection in spot scanning proton therapy

  • Kim, Sung Hun;Jeong, Jong Hwi;Ku, Youngmo;Jung, Jaerin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2213-2220
    • /
    • 2022
  • The maximum dose delivery at the end of the beam range provides the main advantage of using proton therapy. The range of the proton beam, however, is subject to uncertainties, which limit the clinical benefits of proton therapy and, therefore, accurate in vivo verification of the beam range is desirable. For the beam range verification in spot scanning proton therapy, a prompt gamma detection system, called as gamma electron vertex imaging (GEVI) system, is under development and, in the present study, the performance of the GEVI system in spot scanning proton therapy was predicted with Geant4 Monte Carlo simulations in terms of shift detection sensitivity, accuracy and precision. The simulation results indicated that the GEVI system can detect the interfractional range shifts down to 1 mm shift for the cases considered in the present study. The results also showed that both the evaluated accuracy and precision were less than 1-2 mm, except for the scenarios where we consider all spots in the energy layer for a local shifting. It was very encouraging results that the accuracy and precision satisfied the smallest distal safety margin of the investigated beam energy (i.e., 4.88 mm for 134.9 MeV).

Neutronic design of pulsed neutron facility (PNF) for PGNAA studies of biological samples

  • Oh, Kyuhak
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.262-268
    • /
    • 2022
  • This paper introduces a novel concept of the pulsed neutron facility (PNF) for maximizing the production of the thermal neutrons and its application to medical use based on prompt gamma neutron activation analysis (PGNAA) using Monte Carlo simulations. The PNF consists of a compact D-T neutron generator, a graphite pile, and a detection system using Cadmium telluride (CdTe) detector arrays. The configuration of fuel pins in the graphite monolith and the design and materials for the moderating layer were studied to optimize the thermal neutron yields. Biological samples - normal and cancerous breast tissues - including chlorine, a trace element, were used to investigate the sensitivity of the characteristic γ-rays by neutron-trace material interactions and the detector responses of multiple particles. Around 90 % of neutrons emitted from a deuterium-tritium (D-T) neutron generator thermalized as they passed through the graphite stockpile. The thermal neutrons captured the chlorines in the samples, then the characteristic γ-rays with specific energy levels of 6.12, 7.80 and 8.58 MeV were emitted. Since the concentration of chlorine in the cancerous tissue is twice that in the normal tissue, the count ratio of the characteristic g-rays of the cancerous tissue over the normal tissue is approximately 2.

Conceptual design of hybrid target for molybdenum-99 production based on heavywater

  • Ali Torkamani ;Ali Taghibi Khotbehsara ;Faezeh Rahmani ;Alexander Khelvas ;Alexander Bugaev ;Farshad Ghasemi
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1863-1870
    • /
    • 2023
  • Molybdenum-99 (99Mo) is used for preparing Technetium-99 m (99mTc), which is the most widely used isotope in nuclear medicine. In this work, a study for 99Mo production based on a high-power electron accelerator has been performed as an alternative approach to produce 99mTc. In this study, Monte Carlo MCNPX2.6 code has been used to examine a novel idea of simultaneous hybrid production of 99Mo via both photoneutron and neutron capture reactions using an electron accelerator in heavy water tank. It is expected that this conceptual design including an arrangement of metallic plates of 100Mo and 98Mo produces total activity of 97.5 Ci at the end of 20-h continuous e-beam irradiation (30 MeV, 10 mA).

Impacts of Saudi Arabian fly ash on the structural, physical, and radiation shielding properties of clay bricks rich vermiculite mineral

  • Aljawhara H. Almuqrin;Abd Allh M. Abd El-Hamid;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2324-2331
    • /
    • 2024
  • The current study investigated Saudi Arabian oil fly ash impacts on Egyptian clay bricks' structural and radiation shielding properties. To produce the required bricks, crushed clay minerals from the Hafafit area were mixed with 0, 10, 20, 30, and 40 % wt.% Saudi Arabian oil fly ash and pressed at a pressure rate of 68.55 MPa. Identification of the minerals in the chosen clay was achieved via X-ray diffraction. Additionally, the material's morphology and chemical composition were determined through scanning electron microscope and energy-dispersive X-ray. The fabricated bricks' density was reduced by 36.3 % through increasing the concentration of fly ash from 0 to 40 wt%. Then, the fly ash addition's influence on the fabricated clay bricks' γ-ray shielding properties was investigated by Monte Carlo simulation, which found a reduction in the fabricated bricks' linear attenuation coefficient (LAC) by 41.2, 36.0, 33.8, and 33.8 % at the 0.059, 0.103, 0.662, and 1.252 MeV γ-ray energies, respectively. The LAC reduction caused an increase in the fabricated bricks' half-value thickness, transmission factor, and the equivalent thickness of the lead. Moreover, the thicker fabricated sample thicknesses were found to have high γ-ray shielding capacity and can thus be used in radiation shielding applications.

Photoneutron yield for an electron beam on tantalum and erbium deuteride

  • Andrew K. Gillespie;Cuikun Lin;R.V. Duncan
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3084-3089
    • /
    • 2024
  • An electron beam may be used to generate bremsstrahlung photons that go on to create photoneutrons within metals. This serves as a low-energy neutron source for irradiation experiments. In this article, we present simulation results for optimizing photoneutron yield for a 10-MeV electron beam on tantalum foil and erbium deuteride (ErD3). The thickness of the metal layers was varied. A tantalum foil thickness of 1.5 mm resulted in the most photons reaching the second metal layer. When a second metal layer of ErD3 was included, the photoneutron yield increased with the thickness of the secondary layer. When the electron beam was directly incident upon a layer of ErD3, the photoneutron yield did not differ significantly from the yield when a layer of tantalum was included. The directional photoneutron yield reached a maximum level when the thickness of the ErD3 layer was around 12 cm. About 1 neutron was generated per 104 source electrons. When using a 2-mA beam current, it is possible to generate up to 1012 neutrons per second, making this combination a relatively-inexpensive neutron generator.

양성자 가속기 연구센터 관련 전력설비 설계 현황 (Electric Power System Design Status for the Proton Accelerator Conventional Facilities of PEFP)

  • 문경준;전계포;민의섭;남정민;김준연;김보현;정우성;유석태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.496-497
    • /
    • 2006
  • 90년대에 들어서면서부터 미래원천기술 개발에 필요한 양성자원 및 중성자원의 중요성이 부각됨으로써, 이에 적합한 고에너지(수백 MeV${\sim}$수 GeV) 및 대전류(수십 mA)의 대형 양성자 가속기가 개발되어 반도체 생산, 의료장비 등 여러 분야에 널리 적용되고 있는 추세이다[1, 2]. 이에 양성자 사업단은 21세기 미래 원천기술을 개발하고 산업경쟁력을 제고하며 공공복지를 증진시킬 수 있는 양성자가속기를 개발하여, NT, BT, IT, ST등 중요 국가과학기술분야의 발전기반을 확충하기 위한 프론티어 사업목표로 하고 있으며 이에 부응할 수 있는 양성자 가속기 연구센터 건설계획을 설정하여 추진 중에 있다. 본 논문에서는 양성자 가속기 연구센터 건설계획 과정 중에서 전력설비 설계 방법, 즉 154kV 수전 설비, 직류전원계통, 무정전 전원계통 설비, 접지 및 피뢰설비의 기능 및 특징에 관해 기술하고자 한다.

  • PDF