• Title/Summary/Keyword: J2010

Search Result 2,450, Processing Time 0.025 seconds

FLUID-STRUCTURE INTERACTION ANALYSIS OF EXTERNAL GEAR PUMP (회전용적형 기어펌프의 유체-구조연동 전산해석)

  • Lee, J.H.;Kim, T.G.;Lee, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.83-85
    • /
    • 2010
  • A hydraulic gear pump is widely used in many industrial applications to provide both high pressure and high flow rate by physical displacement of finite volume of fluid with each revolution. In this study, two dimensional fluid-structure interaction simulation of gear pump flow was carried out to examine detailed complex flow patterns and structural stress distribution on rotors by using a commercial software ADINA. The effect of rotor clearance size on the flow characteristics, specially the temporal variation of velocity and pressure field, which is a main source of flow noise, also was investigated.

  • PDF

ROBUST DESIGN OPTIMIZATION OF RAE2822 AIRFOIL UNDER OPERATIONAL UNCERTAINTY USING METAMODEL (근사모델을 이용한 RAE2822 운용 불확실성 강건최적설계)

  • Bae, H.G.;Kwon, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.60-66
    • /
    • 2010
  • In the view of robust design optimization, RAE2822 airfoil was designed to achieve not only the maximum lift-to-drag ratio but also insensitivity of that. While the RAE2822 is flying at the cruise speed, Mach variation is considered as the operational uncertainty. In order to explore the design space, metamodels were introduced instead of consecutively computing the gradient. Also a metamodel was used to represent the sigma space. Using the metamodel, an optimum value was searched in the view of global optimization.

  • PDF

AERODYNAMIC DESIGN OF A MULTI-FUNCTION AIR DATA SENSOR BY USING CFD AND WIND TUNNEL TEST (전산해석 및 풍동시험을 이용한 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C.;Hwang, I.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore, major performances are determined by aerodynamic characteristics of vane. In order to design the sensor compatible to the requirement, aerodynamic characteristics of sensors were investigated by using CFD and dynamic response analysis was also performed for transient performance. The final aerodynamic performance was measured by the wind tunnel test at Aerosonic and the results were compared with the present design. The results showed that the aerodynamic design using the CFD can be successfully used for the design of vane type multi-function air data sensor.

REVIEW ON OPENFOAM - AN OPEN SOURCE SOFTWARE (Source 공개 코드 OpenFOAM에 대한 리뷰)

  • Park, J.K.;Kang, K.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.46-53
    • /
    • 2010
  • Recently, several open source codes for computational fluid dynamics (CFD) have been introduced and are spreading fast. Our group has chosen the OpenFOAM as a platform to develop our own in-house code. In this brief review, we would like to share the information on the codes and what we have experienced so far. We introduce several features of OpenFOAM, which include the performance compared with commercial packages, estimation for current user population, and our own prospect for future improvement in performance and growth in user population. In addition, we briefly introduce our experience gained in embedding the level set method into the OpenFOAM.

A NUMERICAL STUDY ON FLOW PATTERN IN CONNECTING PASSAGEWAY OF A COMPOSITE BUILDING (복합 건축물 연결 통로에서의 기류형성에 관한 수치적 해석 연구)

  • Jeon, B.J.;Jang, B.Y.;Choi, H.G.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.81-86
    • /
    • 2010
  • In this paper, a three-dimensional numerical study on flow pattern in winter along connecting passageway of a composite building was conducted using a commercial CFD package. The incompressible Navier-Stokes equation coupled was solved by using SIMPLE algorithm in order to find steady solutions. It was shown that a upward flow is generated inside the building in winter due to buoyancy effect and that the air inside connecting passageway flows from the shorter building to the taller one regardless of the slope of the passageway. Further, it was found that the magnitude of air velocity inside connecting passageway increases as the uphill slope to the taller building increases and decreases as the downhill slope to the taller one increases, although the variation in the magnitude of fluid velocity is not substantial. Lastly, it was shown that the maximum air velocity inside connecting passageway is less than the allowable limit for all the cases considered in this study.

STUDY ON NUMERICAL ANALYSIS AND TURBULENCE MODELS FOR ARC DISCHARGES IN HIGH-VOLTAGE INTERRUPTERS (초고압 차단부 아크방전 수치해석 및 난류모델에 관한 연구)

  • Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.9-15
    • /
    • 2010
  • In this study, we calculated arc discharges and flow characteristics driven by arcs in a thermal puffer chamber, which is one of most outstanding high-voltage interrupters, for understanding the complex physics and the probability of thermal breakdown. The four main parts of arc model for this virtual-reality are radiation, PTFE ablation, Cu evaporation, and turbulence. Among these important parts the turbulence model can be critical to the reliability of computation results during the whole arcing history because the plasma flow is affected by high heat energy and mass momentum. Two turbulence models, the Prandtl's mixing length model and the standard $k-\varepsilon$ model, are applied for these calculations and are compared with pressure-rise inside chamber and arc voltage between the contacts as well as flow characteristics near current zero.

Photodynamic Therapy for Methicillin-resistant Staphylococcus aureus with High-level Mupirocin Resistance using 630 nm Light-emitting Diode

  • Kwon, Pil-Seung;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.331-339
    • /
    • 2010
  • This study aims to evaluate the effect of Photodynamic Therapy (PDT) against methicillin-resistant Staphylococcus aureus with high-level mupirocin resistance (Hi-Mup MRSA). To examine the antimicrobial effect of photogem-mediated PDT against Hi-Mup MRSA, CFU quantifications, bacteria cell viability tests, and disk diffusion antimicrobial susceptibility tests were evaluated. In addition, one of PDT mechanisms was investigated by accumulating photogem ($10\;{\mu}g/ml$) in Hi-Mup MRSA. Photogem-mediated PDT properly inhibited the colony formation of Hi-Mup MRSA. Viable bacteria decreased greatly after a PDT application with photogem $10\;{\mu}g/ml$ at energy density $15\;J/cm^2$. The diameter of the inhibition zone around susceptible disks increased after PDT. In addition, we confirmed the accumulation of photogem in bacteria through fluorescent images. These results demonstrated that excellent photosensitization of Hi-Mup MRSA can be achieved using photogem with 630 nm LED irradiation. Thus, PDT may make survival Hi-Mup MRSA inactive.

ANALYSIS ON CHARACTERISTICS OF AN AXIAL FLOW FAN THROUGH CFD ANALYSIS INCORPORATED WITH MOTOR CHARACTERISTICS (모터의 특성을 고려한 CFD 해석에 의한 축류홴 성능해석)

  • Kim, J.H.;Hur, N.;Kim, W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.109-114
    • /
    • 2010
  • In a fan design, CFD analysis, which is very useful for mechanical design relating to the heat and fluid dynamics, is one of the most popular tools. However, since the CFD analysis is conventionally carried out with the constant fan speed condition, the speed change, induced by the air flow rate and motor characteristics, is hardly modeled. And, consequently, the remarkable difference exist between analysis and experimental results. In this paper, we has proposed a method of setting the varying fan speed as a boundary condition considering air flow rate and motor torque-speed characteristics. The effectiveness of the proposed method is verified by comparison with experimental results.

STUDY ON PROPERTIES OF INTERIOR BALLISTICS ACCORDING TO SOLID PROPELLANT POSITION IN CHAMBER (약실 내 추진제 위치에 따른 강내탄도 성능해석)

  • Jang, J.S.;Sung, H.G.;Lee, S.B.;Roh, T.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.17-24
    • /
    • 2010
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristics according to the position of the solid propellant in chamber has been investigated. In existing research, propellants have been evenly distributed in the chamber. In this study, however, several cases of the existence of empty space in the chamber at which the propellants are not evenly distributed are considered. The 7-perforated propellant configuration has been used in this research. The results have shown the change of performance of the interior ballistics according to solid propellant positions in the chamber.

NUMERICAL STUDY ON WIND TUNNEL GROUND PLATE WITH A PRESSURE CONTROL DEVICE (압력 조절 장치를 갖는 풍동 지면판에 관한 수치해석적 연구)

  • Lee, M.J.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.53-59
    • /
    • 2010
  • Preliminary design of a ground plate, a device installed close to the aircraft model for wind tunnel test to simulate the ground effect, was performed by a numerical simulation. A two-dimensional numerical study was performed initially to decide the optimal leading edge and flap configurations. Then, three-dimensional studies were conducted to decide the optimal flap deflection angle for pressure distribution reduction since the plate and the plate supporting system generate static pressure difference between the upper and lower flow regions. Three-dimensional simulation additionally studied the effect of the clearance between the plate and the wind tunnel side wall. For the efficiency of computation, half model was simulated and a symmetric boundary condition was applied on the center plane. Based on the preliminary design, a ground plate was designed, manufactured and tested at the Korea Aerospace Research Institute(KARI) wind tunnel. The measured pressure differences versus flap deflection angle agreed well with the predicted results.