• 제목/요약/키워드: J-symmetric ring

검색결과 16건 처리시간 0.017초

ON SOME GENERALIZATIONS OF THE REVERSIBILITY IN NONUNITAL RINGS

  • Hryniewicka, Malgorzata Elzbieta;Jastrzebska, Malgorzata
    • 대한수학회지
    • /
    • 제56권2호
    • /
    • pp.289-309
    • /
    • 2019
  • This paper is intended as a discussion of some generalizations of the notion of a reversible ring, which may be obtained by the restriction of the zero commutative property from the whole ring to some of its subsets. By the INCZ property we will mean the commutativity of idempotent elements of a ring with its nilpotent elements at zero, and by ICZ property we will mean the commutativity of idempotent elements of a ring at zero. We will prove that the INCZ property is equivalent to the abelianity even for nonunital rings. Thus the INCZ property implies the ICZ property. Under the assumption on the existence of unit, also the ICZ property implies the INCZ property. As we will see, in the case of nonunital rings, there are a few classes of rings separating the class of INCZ rings from the class of ICZ rings. We will prove that the classes of rings, that will be discussed in this note, are closed under extending to the rings of polynomials and formal power series.

SOME STUDIES ON 2-PRIMAL RINGS, (S,1)-RINGS AND THE CONDITION (KJ)

  • Matsuoka, Manabu
    • 대한수학회논문집
    • /
    • 제25권3호
    • /
    • pp.343-347
    • /
    • 2010
  • In this paper we study the connection between 2-primal rings, (S,1)-rings and related conditions. And we investigate some condition which is the special case of pseudo symmetric. We also study the condition (KJ) which is given by J. Y. Kim and H. L. Jin. We introduce some condition and we prove that our condition is equivalent to the condition (KJ) when it is an (S,1)-ring.

Computational Study on Spirocyclic Compounds as Energetic Materials (I)

  • Seok, Won K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.989-993
    • /
    • 2014
  • The molecular structures of 2,6-diaza-1,3,5,7-tetraoxaspiro[3,3]heptane (1) and its dinitro derivative, 2,6-dinitro-2,6-diaza-1,3,5,7-tetraoxaspiro[3,3]heptane (2), were fully optimized without symmetry constraints at $HF/6-31G^*$ level of theory. A bisected conformation with respect to the ring is preferred with a $C_2$ symmetric structure. The density of each molecule in the crystalline state was estimated to 1.12 and 2.36 $g/cm^3$ using PM3/VSTO-3G calculations from the molecular volume. The heat of formation was calculated for two compounds at the CBS-4M level of theory. The detonation parameters were computed using the EXPLO5 software: D = 6282 m/s, $P_{C-J}$ = 127 kbar for compound 1, D = 7871 m/s, $P_{C-J}$ = 307 kbar for compound 2, and D = 6975 m/s, $P_{C-J}$ = 170 kbar for 60% compound 2 with 40% TNT. Specific impulse of compound 1 in aluminized formulation when used as monopropellants was very similar to that of the conventional ammonium perchlorate in the same formulation of aluminum.

CLASSIFICATION OF CLIFFORD ALGEBRAS OF FREE QUADRATIC SPACES OVER FULL RINGS

  • Kim, Jae-Gyeom
    • 대한수학회보
    • /
    • 제22권1호
    • /
    • pp.11-15
    • /
    • 1985
  • Manddelberg [9] has shown that a Clifford algebra of a free quadratic space over an arbitrary semi-local ring R in Brawer-Wall group BW(R) is determined by its rank, determinant, and Hasse invariant. In this paper, we prove a corresponding result when R is a full ring.Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is non-degenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$(V,R) induced by B is an isomorphism), and with a quadratic mapping .phi.: V.rarw.R such that B(x,y)=1/2(.phi.(x+y)-.phi.(x)-.phi.(y)) and .phi.(rx) = $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U9R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$,.., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2 we reserve the notation [a $a_{11}$, $a_{22}$] for the space. A commutative ring R having 2 a unit is called full [10] if for every triple $a_{1}$, $a_{2}$, $a_{3}$ of elements in R with ( $a_{1}$, $a_{2}$, $a_{3}$)=R, there is an element w in R such that $a_{1}$+ $a_{2}$w+ $a_{3}$ $w^{2}$=unit.TEX>=unit.t.t.t.

  • PDF

Certain exact complexes associated to the pieri type skew young diagrams

  • Chun, Yoo-Bong;Ko, Hyoung J.
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.265-275
    • /
    • 1992
  • The characteristic free representation theory of the general linear group has found a wide range of applications, ranging from the theory of free resolutions to the symmetric function theory. Representation theory is used to facilitate the calculation of explicit free resolutions of large classes of ideals (and modules). Recently, K. Akin and D. A. Buchsbaum [2] realized the Jacobi-Trudi identity for a Schur function as a resolution of GL$_{n}$-modules. Over a field of characteristic zero, it was observed by A. Lascoux [6]. T.Jozefiak and J.Weyman [5] used the Koszul complex to realize a formula of D.E. Littlewood as a resolution of schur modules. This leads us to further study resolutions of Schur modules of a particular form. In this article we will describe some new classes of finite free resolutions associated to the Pieri type skew Young diagrams. As a special case of these finite free resolutions we obtain the generalized Koszul complex constructed in [1]. In section 2 we review some of the basic difinitions and properties of Schur modules that we shall use. In section 3 we describe certain exact complexes associated to the Pieri type skew partitions. Throughout this article, unless otherwise specified, R is a commutative ring with an identity element and a mudule F is a finitely generated free R-module.e.

  • PDF

A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

  • Cho, In-Ho;Kim, Jae-Gyeom
    • 대한수학회보
    • /
    • 제22권2호
    • /
    • pp.121-126
    • /
    • 1985
  • D.K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if W(R)/I(R)$^{3}$ and W(S)/I(S)$^{3}$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K.I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings. Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is nondegenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$ (V, R) induced by B is an isomorphism), and with a quadratic mapping .phi.:V.rarw.R such that B(x,y)=(.phi.(x+y)-.phi.(x)-.phi.(y))/2 and .phi.(rx)= $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$, .., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2, we reserve the notation [ $a_{11}$, $a_{22}$] for the space.the space.e.e.e.

  • PDF