• Title/Summary/Keyword: J-state

Search Result 3,151, Processing Time 0.027 seconds

Analysis of Forming Limit for Circular Bonded Sheet Metals by Shear Band Formation (전단띠 형성에 의한 원형접합판의 변형한계 해석)

  • 정태훈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.127-132
    • /
    • 2001
  • By the use of a similar numerical method as the forming limit strain by coating method of coated sheet metals is investigated, in which the FEM is applied and J2G(J2-Gotohs Corner Theory) is utilized as the plasticity constitutive equa-tion. Circular bonded sheet metals with dissimilar sheets on both surface planes are stretched in a plane -strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such com-posite sheets are clearly illustrated. It is concluded that, it the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighed according thickness.

  • PDF

Numerical Investigation of Forming Limit of Clad Coated Sheet Metals (클래드코팅재의 성형성에 대한 수치적연구)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.340-345
    • /
    • 2003
  • By the use of a similar numerical method as that in the previous paper, the forming limit strain by coating method of clad sheet metals is investigated, in which the FEM is applied and J2G(J2-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Clad two-layer sheets and sheets bonded with dissimilar sheets on both surface planes are stretched in a plane-strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the clad state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighted according thickness.

  • PDF