• Title/Summary/Keyword: J-curve

Search Result 1,013, Processing Time 0.035 seconds

A Method to Determine the Fracture Toughness $J_{IC}$ (파괴 인성치 $J_{IC}$의 결정 방법에 관한 연구)

  • 최영환;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.79-86
    • /
    • 1990
  • A method to determine directly $J_{IC}$ from load-displacement curve without measuring crack growth amount is studied. A method to use key curve in determination of $J_{IC}$ is also considered. The values of $J_{IC}$ obtained from the above methods are compared with that obtained from the ASTM standard test method (E813). By performing experiments using both compact-tension specimen and three-point-bending specimen of a structural alloy steel SCM4, it is shown that the methods proposed here may be used in determination of $J_{IC}$.

Qualification of J-R (J-T) Curve from 1/2T Compact-Tension Specimen (1/2T Compact-Tension Type 시편으로 구한 J-R (J-T) 곡선의 타당성 검토.)

  • Jee, Sae-Hwan;Park, Sun-Pil
    • Nuclear Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.169-179
    • /
    • 1987
  • The change of material J-R (J-T) curve with crack extension and J-calculation method was investigated to give experimental and analytical method for reliable J-R (J-T) curve, which was adapted recently as a tool for instability analysis of Nuclear Pressure Vessel. Experiments were carried out by Single Specimen Unloading Compliance Method using 1/2"T, Compact-Tension Type fracture mechanic specimens which were the same size and material as domestic nuclear pressure vessel material surveillance specimens. The results revealed that crack extension up to 25~30% of initial uncracked ligament and JD (Deformation theory J) calculation method, currently being used in NUREG-0744, could give rather reliable material J-R (J-T) curve than the small crack extension and JM (Modified J) calculation method. But as JM results more or less higher J at instability, the application of JM should be considered regarding to the problem of power plant availability.lity.

  • PDF

Prediction of Fracture Resistance Curves for Nuclear Piping Materials(II) (원자력 배관재료의 파괴저항곡선 예측)

  • Chang, Yoon-Suk;Seok, Chang-Sung;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1786-1795
    • /
    • 1997
  • In order to perform leak-before-break design of nuclear piping systems and integrity evaluation of reactor vessels, full stress-strain curves and fracture resistance (J-R) curves are required. However it is time-consuming and expensive to obtain J-R curves experimentally. The objective of this paper is to modify two J-R curve prediction methods previously proposed by the authors and to propose an additional J-R curve prediction method for nuclear piping materials. In the first method which is based on the elastic-plastic finite element analysis, a blunting region handling procedure is added to the existing method. In the second method which is based on the empirical equation, a revised general equation is proposed to apply to both carbon steel and stainless steel. Finally, in the third method, both full stress-strain curve and finite element analysis results are used for J-R curve prediction. A good agreement between the predicted results based on the proposed methods and the experimental ones is obtained.

J_{Ic}$ evaluation of smooth and side-grooved CT specimens in submerged arc-welded SB 41 (SB41강 潛弧熔接部의 平滑 및 側面을 CT試驗片의 J_{Ic}$ 評價)

  • 오세욱;안광주;이태종
    • Journal of Welding and Joining
    • /
    • v.4 no.1
    • /
    • pp.47-57
    • /
    • 1986
  • The elastic-plastic fracture toughness J_{Ic}$ of submerged arc welded structural steel $SB_{41}$ which has the properties of low strength and high ductility was discussed, especially paying attention to a comparison between two methods recommended by ASTM and JSME. $J_{IC}$ tests were carried out with compact specimens by means of R-curve, SZW, ultrasonic and electric potential methods. Based on the investigations in this study, the results obtained are as follows; (1) The JSME R-curve method gave the smallest $J_{IC}$ values which were physically closest to the crack initiation and seemed to be more practical and stable procedure between the two R-curve methods. (2) The JSME SZW method tended to slightly overestimate the $J_{IC}$ values at initiation of ductile tearing. (3) The ultrasonic and electric potential methods which also had a tendency to overestimate these $J_{IC}$ values were confirmed to be applicable and useful in determining these values. (4) The $J_{IC}$ values by the JSME R-curve method were 18.06 kgf/mm and 17.25kgf/ mm for the smooths and the side grooved CT specimen respectively.

  • PDF

A Method of Determination of Crack Growth Resistance Curve by J Integral (J적분 을 이용한 균열성장 저항곡선 의 결정)

  • 윤기봉;최성렬;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.441-450
    • /
    • 1983
  • A reasonable J-resistance curve determination procedure is suggested by correcting the amount of overestimation in J-value whose effect becomes significant when crack grows. Experiments using compact tension specimens of an alloy steel (SCM4, K.S. Designation) are performed. The value of J estimated according to this procedure is compared with that as obtained from the method by Merkle and Corten. The conditions for J controlled crack growth proposed by Hutchinson and Paris are examined for the material used here. It appears that J resistance curve, which is independent of crack ratio can be obtained for those specimens satisfying the conditions of J controlled crack growth.

Variation of the Fracture Resistance Curve with the Change of a Size in the CT Specimen (CT시험편의 크기 변화에 따른 파괴저항곡선의 변화)

  • Seok, Chang-Seong;Kim, Su-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2963-2971
    • /
    • 2000
  • In order to obtain more realistic fracture resistance curve, research is currently underway to introduce new parameter and to quantify the constraint effect. The objective of this study is to investigate the relationship between the constraint effect of a size(plane size and thickness) and the fracture resistance curve. In this paper fracture toughness tests were performed with various plane size and various thickness of specimens in two materials. The test results showed that the effects of plane size in th4 J-R curve were significant and the curve was risen with an increase in plane size. However, relatively weak influence was observed form the change of the specimen thickness and size. The stress fields near the crack tip of th specimen is close to the HRR field according to increasing the plane size and Q stress appears different value according to material properties and the plane size.

Variation of the fracture resistance curve with the change of a size in the specimen of reduced activation ferritic steel (JLF-1) (저방사화 철강재 (JLF-1)의 시험편 크기 변화에 따른 파괴저항곡선의 변화)

  • Kim, D.H.;Yoon, H.K.;Lee, S.P.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1240-1245
    • /
    • 2003
  • Reduced activation ferritic steel (JLF-1) is considered as a promising candidate material for blanket or first-wall structure of D-T fusion reactors. The fracture tests of fracture resistance curve (J-R curve) and $J_{IC}$ are desirable to investigate the exact fracture toughness of JLF-1 steel, since it has a high ductility. The fracture toughness of JLF-1 steel is affected by the configuration of test specimen such side groove, specimen thickness or specimen size. In this study, the fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The test results showed the standard specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen.

  • PDF

Prediction of Failure Behavior for Nuclear Piping Using Curved Wide-Plate Test (흰 광폭평판 시험을 이용한 원자력 배관의 파괴거동예측)

  • Huh, Nam-Su;Kim, Yun-Jae;Choi, Jae-Boong;Kim, Young-Jin;Lim, Hyuk-Soon;Chung, Dae-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.352-361
    • /
    • 2004
  • One important element of the Leak-Before-Break analysis of nuclear piping is how to determine relevant fracture toughness (or the J-resistance curve) for nonlinear fracture mechanics analysis. The practice to use fracture toughness from a standard C(T) specimen is known to often give conservative estimates of toughness. To improve the accuracy, this paper proposes a new method to determine fracture toughness using a nonstandard testing specimen, curved wide-plate in tension. To show validity of the proposed curved wide-plate test, the J-resistance curve from the full-scale pipe test is compared with that from the curved wide-plate test and that from the C(T) specimen. It is shown that the J-resistance curve form the curved wide-plate tension test is similar to, but that from the C(T) specimen is lower than, the J-resistance curve from the full-scale pipe test. Further validation is performed by investigating crack-tip constraint conditions via detailed 3-D FE analyses, which shows that the crack-tip constraint condition in the curved wide-plate tension specimen is indeed similar to that in the full-scale pipe under bending.

A Study on the Elasto-Plastic Fracture Toughness $J_IC$ Evaluation of Carbon Steel (탄소강의 탄소성파괴인성 $J_IC$ 평가에 관한 연구)

  • Kim, Hei-Song;Ahn, Byoung-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.90-99
    • /
    • 1989
  • In this study, J-integral values obtained by various methods, i.e, R-Curve, Unloading Compliance, Strectched Zone Width [SZW], and Acoustic Emission [AE] methods are investigated. Elasto-plastic fracture toughness [$J_IC$] estimations by R-curve method are overestimated than those by SZW method, and those by unloading compliance method is around middle value of them. And the difference between them is little. The $J_IC$ value by AE method was almost agreed with that by SZW, and then proved to be useful. Crack propagation mechanism on fractography is a stable ductile fracture. For the identification of ductile fracture, both fractography analysis and AE method were applied to estimate the characteristics more precisely.

  • PDF

Two-Parameter Characterization for the Resistance Curves of Ductile Crack Growth (연선균열성장 저항곡선에 대한 2매개변수의 특성)

  • X.K.Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.488-503
    • /
    • 1999
  • The present paper considers the constraint effect on J-R curves under the two-parameter $J-A_2$ controlled crack growth within a certain amount of crack extension. Since the parameter $A_2$ in $J-A_2$ three-term solution is independent of applied loading under fully plasticity or large-scale defor-mation $A_2$ is a proper constraint parameter uring crack extension. Both J and $A_2$ are used to char-acterize the resistance curves of ductile crack growth using J as the loading level and $A_2$ are used to char-acterize the resistance curves of ductile crack growth using J as the loading level and A2 as a con-straint parameter. Approach of the constraint-corrected J-R curve is proposed and a procedure of transferring the J-R curves determined from standard ASTM procedure to non-standard speci-mens or real cracked structures is outlined. The test data(e.g. initiation toughness JIC and tearing modulus $T_R$) of Joyce and Link(Engineer-ing Fracture Mechanics 1997, 57(4) : 431-446) for single-edge notched bend[SENB] specimen with from shallow to deep cracks is employed to demonstrate the efficiency of the present approach. The variation of $J_{IC}$ and $T_R$ with the constraint parameter $A_2$ is obtained and a con-straint-corrected J-R curves is constructed for the test material of HY80 steel. Comparisons show that the predicted J-R curves can very well match with the experimental data for both deep and shallow cracked specimens over a reasonably large amount of crack extension. Finally the present constraint-corrected J-R curve is used to predict the crack growth resistance curves for different fracture specimens. over a reasonably large amount of crack extension. Finally the present constraint-corrected J-R curve is used to predict the crack growth resistance curves for different fracture specimens. The constraint effects of specimen types and specimen sizes on the J-R curves can be easily obtained from the constrain-corrected J-R curves.

  • PDF