• Title/Summary/Keyword: J-Nozzle

Search Result 357, Processing Time 0.031 seconds

An Experimental Study on the Drop Size of a Twin-Fluid Swirl Jet Nozzle (이유체 선회분사 노즐의 액적크기에 관한 실험적 연구)

  • Oh, J.H.;Kim, W.T.;Kang, S.J.;Rho, B.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 1996
  • This experimental study was to investigate spray angles and drop sizes in an external mixed twin-fluid swirl jet nozzle. Twin-fluid swirl jet nozzle with swirlers designed four swirl angles such as $0^{\circ},\;22.5^{\circ},\;45^{\circ},\;64.2^{\circ}$ was employed. A PDA system was utilized for the measurement of drop size and mean velocity. Water and air were used as the working fluids in this experiment. The mass flow rate of water was fixed as 0.03 kg/min, and air flow rates were controlled to have the air/liquid mass ratio from 1.0 to 6.0. As a result, swirl angle controlled to spray angles and drop sizes. It was found that swirl angle was increased with spray angle and with decreased SMD. However, the effect of swirl angle was reduced at large air/liquid mass ratio(Mr=6.0).

  • PDF

THE COMPARISON OF PIFS AND HEAT TRANSFER WITH BASE CONFIGURATIONS (기저 형상에 따른 PIFS 및 열전달 비교 연구)

  • Kim, J.G.;Lee, J.W.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.195-200
    • /
    • 2010
  • Numerical investigation was conducted to study the effects of after-body configurations and nozzle lip on the PIFS(Plume Induced Flow Separation) and eat flux to the base face. Two dimensional and axi-symmetric non-equilibrium Navier-Stoke's solver with $k-{\omega}$ SST turbulence model was used to solve the launching vehicle type configuration with propulsive jet. The experimental result of Robert J. McGhee was compared with our computational results for code validation. Three types of the after-body configurations (Straight, Boat-tail, Flare type) were simulated for this study. And the nozzle lip effect was studies using the three types of base configurations same simulation conditions. As a result of numerical investigations, higher pressure ratio condition and boat-tail after-body configuration caused severe PIFS phenomenon but the flare type after-body configuration and low pressure ratio suppressed PIFS. Flare type after-body configuration and low pressure ratio case reduced heat flux to base face. The nozzle lip dispersed the heat flux widely along the base face and the nozzle lip.

  • PDF

Residual stress distribution analysis in a J-groove dissimilar metal welded component of a reactor vessel bottom head using simulation and experiment

  • Dong-Hyun Ahn;Jong Yeon Lee;Min-Jae Choi;Jong Min Kim;Sung-Woo Kim;Wanchuck Woo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.506-519
    • /
    • 2024
  • To simulate the verification process using materials from a decommissioned reactor, a mock-up of the bottom-mounted instrument nozzle in the Kori 1 reactor, where the nozzle was attached to a plate by J-groove dissimilar metal welding, was fabricated. The mock-up distortion was quantified by measuring the plate surface displacement after welding. The residual stresses formed on the support plate surface and the inner surface of the nozzle were then analyzed using the hole-drilling method, contour method, and neutron diffraction. Welding simulations were performed using a 3D finite element method to validate the measured results. The measured and computed stress distributions on the support plate exhibited reasonable agreement. Conversely, the stresses on the inside of the nozzle were found to have an indisputable difference in the contour method and neutron diffraction measurements, which demonstrated strong tensile and compressive hoop stresses, respectively. The possible origins of such differences were investigated and we have provided some suggestions for a precise evaluation in the simulation. This study is expected to be useful in future research on decommissioned reactors.

Effect of Nozzle on LBB Evaluation for Small Diameter Nuclear Piping (직경이 작은 원자력배관의 파단전누설 해석에 미치는 노즐의 영향)

  • Yu, Yeong-Jun;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1872-1881
    • /
    • 1996
  • LBB(Leak-Before-Break) analysis is performed for the highest stress location of each different type of mateerials in the nuclear piping line. In most cases, the highest stress occurs in the pipe and nozzle interface location. i.e. terminal end. The current finite element analysis approach utilizes the symmetry condition both for locations near the nozzle and for locationa away from the nozzle to minimize the size of the finite element model and to make analysis simple when calculating the J-integral values at the crack tip. In other words, the nozzle is not included in the finite element model. However, in reality, the symmetric condition is not applicable for the pipe-nozzle interface location. Because the pipe-nozzle interface location is asymmetric due to different stiffenss of the pipe and nozzle(both material and dimensions). The simplified analysis approach for pipe-nozzle interface locaiton is too conservative for a smaller diameter piping. In tlhis paper, various analyses are performed for the range of materials and crack sizes to evaluate the nozzle effect for a LBB anlaysis. This paper presents methodology for developing the piping evaluaiton diagram at the pipe-nozzle interface location.

Analysis of SCC Behavior of Alloy 600 Nozzle Penetration According to Residual Stress Induced by Dissimilar Metal Welding (Alloy 600 노즐관통부의 이종금속용접 잔류응력에 따른 응력부식균열 거동 분석)

  • Kim, Sung-Woo;Kim, Hong-Pyo;Kim, Dong-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.34-41
    • /
    • 2010
  • This work is concerned with the analysis of stress corrosion cracking(SCC) behavior of Alloy 600 nozzle penetration mock-up according to a residual stress induced by a dissimilar metal welding(DMW) in a nuclear reactor pressure vessel. The effects of the dimension and materials of the nozzle penetration on the deformation and the residual stress induced by DMW were investigated using a finite element analysis(FEA). The inner diameter(ID) change of the nozzle by DMW and its dependance on the design variables, calculated by FEA, were well consistent with those measured from the mock-up. Accelerated SCC tests were performed for three mock-ups with different wall thicknesses in a highly acidic solution to investigate mainly the effect of the residual stress on the SCC behavior of Alloy 600 nozzle. From a destructive examination of the mock-up after the tests, the SCC behavior of the nozzle was fairly related with the residual stress induced by DMW : axial cracks were found in the ID surface of the nozzle within the J-weld region where the highest tensile hoop stress was predicted by FEA, while circumferential cracks were observed beyond both J-weld root and toe where the highest tensile axial stress was expected.

  • PDF

ABLATION OF PTFE NOZZLE DRIVEN BY ARC PLASMA (아크 플라즈마에 의한 PTFE 노즐 용삭현상)

  • Lee J.C.;Kim Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.311-317
    • /
    • 2005
  • It has been the most progressive interruption technique to use the ablation gas from the surface of PTFE nozzle driven by arc plasma during switching process in $SF_6$ gas circuit breakers. This advanced interruption technique can reduce the required mechanical energy to compress and blow the gas for extinguishing the arc plasma between the electrodes due to using the ablation effect instead. In order to consider the phenomena during calculation of switching process, it is required to confirm the principles of ablation from PTFE nozzle as well as of arc plasma during switching process. In this study, we have calculated the switching process considered the ablation of PTFE nozzle driven by arc plasma using multidisciplinary simulation technique and compared the results with the data without the ablation effect. More $50\%$ difference of pressure rise inside expansion chamber has been found from the results and it should be indispensable for this type of computational work to consider and include the ablation effect of PTFE nozzle. Further study on turbulence and radiation will be followed.

  • PDF

NUMERICAL INVESTIGATION OF EFFECTS OF FLUTED EDGE SHAPE ON THRUST IN A ROCKET NOZZLE (로켓 노즐의 끝면 형상이 추력에 미치는 영향성 연구)

  • Kang, Y.J.;Yang, Y.R.;Kim, S.H.;Hwang, U.C.;Youm, Y.I.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.8-12
    • /
    • 2009
  • In this study the performance of the nozzle of a rocket system is evaluated using a CFD code. The main emphasis of the investigation is placed on the effects of the number (9 and 12) and the depth of fluted edge in the rocket nozzle. It is observed that as the depth increases the rolling moment of the nozzle increases while the thrust of the nozzle decreases.

  • PDF

A Numerical Study of Unsteady Plows in A Rocket Main Nozzle (로켓 주노즐내 비정상 유동의 수치해석적 연구)

  • Kim S. D.;Kim Y. I.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.54-59
    • /
    • 2000
  • A numerical study of axisymmetric rocket main nozzle flow has been accomplished. The CSCM upwind flux difference splitting method with an iterative time marching scheme having second order accuracy in time and space has been used to simulate unsteady flow characteristics in an axisymmetric rocket main nozzle. Though the pressure vary at nozzle inlet with the lapse of time, Mach No. and the density were not changed significontly compared with the temperature. Specific heat ratio $\gamma$=1.134 predicted higher temperature at nozzle throat and exit and nondimensional thrust coefficients at exit than specific heat ratio $\gamma$=1.4 did.

  • PDF