• 제목/요약/키워드: J-선회 시뮬레이션

검색결과 3건 처리시간 0.017초

선회중 제동을 고려한 차량의 동특성 연구 (Analysis of Dynamic Characteristics of a Vehicle Undergoing Turning and Braking)

  • 강주석;윤중락;민현기;이장무
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.109-118
    • /
    • 1995
  • This paper presents a mathematical vehicle model to analyze the dynamic characteristics of a vehicle undergoing braking in a turn. Two kinds of field tests, braking in a steady state turn and braking in a J-turn are performed. Computer simulation results are compared with test results and the braking effect on a vehicle cornering behavior is examined. Also, sensitivity analysis is applied to determine the effect of design parameter changes on the response of vehicle dynamic system.

  • PDF

J-선회 조종성능을 고려한 승용차 현가장치의 최적화 기법 (Optimization Technique of Passenger Car Suspension System Considering J-Turn Handling Performances)

  • 이상범;이춘승;임홍재;김민수
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.267-273
    • /
    • 2004
  • The purpose of this paper is to develop a systematic design method for the suspension system hard points and compliance elements, which have great influence on the handling stability of a vehicle. In this paper, a method to optimize J-turn responses is presented based on the principles of design of experiments, multi-body dynamic analysis and optimum design technique. The design variables associated with the J-turn maneuver are selected through the experimental design sensitivity analysis using the perturbation method. An objective function is defined as an approximate function for the J-turn characteristics using the TSA(Taylor series approximation). The values of the design variables, which make the optimized J-turn characteristics, are obtained using the conjugate gradient method. The result of the J-turn simulation shows that the optimized vehicle has more improved handling stability than the optimized vehicle.

컴퓨터 시뮬레이션에 의한 트랙터와 트레일러의 선회운동 (Turning Behavior of Tractor-Trailer System by Computer Simulation)

  • 김종훈;최창현
    • Journal of Biosystems Engineering
    • /
    • 제16권4호
    • /
    • pp.346-354
    • /
    • 1991
  • Turning behavior of tractor-trailer system was studied to guide the tractor and trailer. Based upon kinematic relationship between the tractor and the trailer, a mathematical model was developed and analyzed by computer simulation. A field test was carried out to verify the mathematical model. Following conclusions were drawn from this study. 1. A mathematical model and a simulation program for turning behavior of tractor-trailer system were developed. 2. The results of the field tests showed that the RMS errors were less than 0.33m and the mathematical model based upon kinematic relationship can be used for mapping guidance system for tractor and trailer. 3. As the steering angle was increased, the turning radius was decreased. When the tractor travelled at the low speed, the travel speed of the tractor did not affect turning radius but did affect running time and stability for steering. 4. When the tractor travelled under the critical velocity, the towed trailer followed smoothly. When the the tractor travelled faster than the critical velocity, the towed trailer oscillated. The critical velocity was determined from the specification of the tractor and the trailer.

  • PDF