• Title/Summary/Keyword: Iwasawa invariants

Search Result 6, Processing Time 0.016 seconds

ON THE REDUCTION OF AN IWASAWA MODULE

  • Oh, Jangheon
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.267-269
    • /
    • 2021
  • A finitely generated torsion module M for ℤp[[T, T2, ⋯ , Td]] is pseudo-null if M/TM is pseudo-null over ℤp[[T2, ⋯ , Td]]. This result is used as a tool to prove the generalized Greenberg's conjecture in certain cases. The converse may not be true. In this paper, we give examples of pseudo-null Iwasawa modules whose reduction are not pseudo-null.

RESIDUAL SUPERSINGULAR IWASAWA THEORY OVER QUADRATIC IMAGINARY FIELDS

  • Parham Hamidi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1035-1059
    • /
    • 2023
  • Let p be an odd prime. Let E be an elliptic curve defined over a quadratic imaginary field, where p splits completely. Suppose E has supersingular reduction at primes above p. Under appropriate hypotheses, we extend the results of [17] to ℤ2p-extensions. We define and study the fine double-signed residual Selmer groups in these settings. We prove that for two residually isomorphic elliptic curves, the vanishing of the signed 𝜇-invariants of one elliptic curve implies the vanishing of the signed 𝜇-invariants of the other. Finally, we show that the Pontryagin dual of the Selmer group and the double-signed Selmer groups have no non-trivial pseudo-null submodules for these extensions.

RELATIONS OF IDEALS OF CERTAIN REAL ABELIAN FIELDS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.221-229
    • /
    • 1998
  • Let $k$ be a real abelian field and $k_{\infty}$ be its $\mathbb{Z}_p$-extension for an odd prime $p$. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $k_n$, the $nth$ layer of the $\mathbb{Z}_p$-extension. By using the main conjecture of Iwasawa theory, we have the following: If $p$ does not divide $\prod_{{{\chi}{\in}\hat{\Delta}_k},{\chi}{\neq}1}B_{1,{\chi}{\omega}^{-1}$, then $A_n$ = {0} for all $n{\geq}0$, where ${\Delta}_k=Gal(k/\mathbb{Q})$ and ${\omega}$ is the Teichm$\ddot{u}$ller character for $p$. The converse of this statement does not hold in general. However, we have the following when $k$ is of prime conductor $q$: Let $q$ be an odd prime different from $p$. and let $k$ be a real subfield of $\mathbb{Q}({\zeta}_q)$. If $p{\mid}{\prod}_{{\chi}{\in}\hat{\Delta}_{k,p},{\chi}{\neq}1}B_{1,{\chi}{\omega}}-1$, then $A_n{\neq}\{0\}$ for all $n{\geq}1$, where ${\Delta}_{k,p}$ is the $Gal(k_{(p)}/\mathbb{Q})$ and $k_{(p)}$ is the decomposition field of $k$ for $p$.

  • PDF

COHOMOLOGY GROUPS OF CIRCULAR UNITS IN ℤp-EXTENSIONS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.173-180
    • /
    • 2000
  • Let $k$ be a real abelian field such that the conductor of every nontrivial character belonging to $k$ agrees with the conductor of $k$. Note that real quadratic fields satisfy this condition. For a prime $p$, let $k_{\infty}$ be the $\mathbb{Z}_p$-extension of $k$. The aim of this paper is to produce a set of generators of the Tate cohomology group $\hat{H}^{-1}$ of the circular units of $k_n$, the $nth$ layer of the $\mathbb{Z}_p$-extension of $k$, where $p$ is an odd prime. This result generalizes some earlier works which treated the case when $k$ is real quadratic field and used them to study ${\lambda}$-invariants of $k$.

  • PDF