• Title/Summary/Keyword: Ito cell

Search Result 296, Processing Time 0.028 seconds

Si-Wafer위에 증착된 ITO 박막의 발수특성

  • ;Baek, Cheol-Heum;Seo, Seong-Bo;Kim, Hwa-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.293-293
    • /
    • 2013
  • 최근 디스플레이산업이 발달하면서 투명전도성 물질에 대한 산업의 요구도가 높아지고 있다. ITO투명전도성 박막은 낮은 비저항과 우수한 식각특성을 가지고 있어 평면표시소자, 광소자, 터치패널 그리고 가스 센서 등 다양한 분야에 응용되고 있으며 디스플레이 소자가 소형화 되어감에 따라 박막의 다기능화가 요구되고 있다. 본 실험에서는 전기적 특성과 친, 발수특성을 동시에 가지는 다기능성 ITO 박막을 연구하였다. RIE방식으로 식각을 통하여 Poly Si-wafer 표면에 미세구조를 만든 기판과 Slide Glass기판에 RF-magnetron sputtering 방법을 이용해 ITO박막을 증착하여 비교분석 하였다. ITO박막 증착시 $100{\sim}400^{\circ}C$ 열처리와 산소를 사용하지 않고 Ar 가스만을 사용하여 실험한 후 열처리온도에 따른 전기적 특성 및 접촉각에 대하여 조사하였다. 3 uL의 Di-water를 사용하여 접촉각을 측정한 결과 $400^{\circ}C$ 열처리가 된 Poly si-wafer 위에 증착된 ITO 박막에서 초-친수 특성을 나타냈으며, 그 위에 PTFE을 증착하였을 경우 12 uL의 Di-water를 사용하여 약 $150^{\circ}$ 이상의 초-발수 특성을 나타내었다. 전기적 특성은 $5.8{\times}10^{-4}$의 비 저항을 나타내었다. 이러한 전기적 특성과 친 발수 특성을 동시에 가지는 ITO 박막은 Anti-Fogging, self-Cleaning, Solar cell 및 디스플레이소자 등 다양한 산업에 이용 가능할 것으로 생각된다.

  • PDF

Fabrication and Characterizations of ITO Film as a Transparent Conducting Electrode for PDP Application (PDP 투명전극의 응용을 위한 ITO 박막의 제작평가)

  • Park, Kang-Il;Lim, Dong-Gun;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.788-791
    • /
    • 2002
  • Tin doped indium oxide(ITO) films are highly conductive and transparent in the visible region whose property leads to the applications in solar cell, liquid crystal display, thermal heater, and other sensors. This paper investigated ITO films as a transparent conducting films for application of PDP. ITO films were grown on glass substrate by RF magnetron sputtering method. To achieve high transmittance and low resistivity, we examined the various film deposition such as substrate temperature, gas pressure, annealing temperature, and deposition time. We recommend the substrate temperature of $500^{\circ}C$ and post annealing of $200^{\circ}C$ in $O_2$ atmosphere for good conductivity and transmittance. From XRD examination, ITO films showed a preferred(222) orientation. As substrate temperature increased from RT to $500^{\circ}C$, the intensity of the (222) peak increased. The highest peak intensity was observed at a substrate temperature of $500^{\circ}C$. with the optimum growth conditions, ITO films showed resistivity of $1.04{\times}10^{-4}{\Omega}-cm$ and transmittance of 81.2% for a film 300nm thick in the wavelength range of the visible spectrum.

  • PDF

Surface Treatment of ITO (Indium-Tin-Oxide) thin Films Prepared by Sol-Gel Process (졸-겔 공정에 의해 제조된 ITO (Indium-Tin-Oxide) 박막의 표면처리)

  • Jung, Seung-Yong;Yun, Young-Hoon;Yon, Seog-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.313-318
    • /
    • 2007
  • ITO (Indium-tin oxide) thin films have been prepared by a sol-gel spinning coating method and fired and annealed in the temperature range of $450-600^{\circ}C$. The XRD patterns of the films indicated the main peak of (222) plane and showed higher crystallinity with increasing an annealing temperature. The surface of the ITO thin films were treated with 0.1 N HCl 20% solution at room temperature. The effects of surface treatment on electrical properties and surface morphologies of the ITO films were investigated with the results of sheet resistance and FE-SEM, AFM images. The samples, subsequently treated with acidic solution for 40 sec showed the sheet resistance of $0.982\;k{\Omega}/square$. The surface treatment using acidic solution diminished the RMS (root mean square) value and the residual carbon content of the ITO films. It seemed that the acid-cleaning of the ITO thin films lead to the decrease of surface roughness and sheet resistance.

Efficiency Improvement in InGaN-Based Solar Cells by Indium Tin Oxide Nano Dots Covered with ITO Films

  • Seo, Dong-Ju;Choi, Sang-Bae;Kang, Chang-Mo;Seo, Tae Hoon;Suh, Eun-Kyung;Lee, Dong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.345-346
    • /
    • 2013
  • InGaN material is being studied increasingly as a prospective material for solar cells. One of the merits for solar cell applications is that the band gap energy can be engineered from 0.7 eV for InN to 3.4 eV for GaN by varying of indium composition, which covers almost of solar spectrum from UV to IR. It is essential for better cell efficiency to improve not only the crystalline quality of the epitaxial layers but also fabrication of the solar cells. Fabrication includes transparent top electrodes and surface texturing which will improve the carrier extraction. Surface texturing is one of the most employed methods to enhance the extraction efficiency in LED fabrication and can be formed on a p-GaN surface, on an N-face of GaN, and even on an indium tin oxide (ITO) layer. Surface texturing method has also been adopted in InGaN-based solar cells and proved to enhance the efficiency. Since the texturing by direct etching of p-GaN, however, was known to induce the damage and result in degraded electrical properties, texturing has been studied widely on ITO layers. However, it is important to optimize the ITO thickness in Solar Cells applications since the reflectance is fluctuated by ITO thickness variation resulting in reduced light extraction at target wavelength. ITO texturing made by wet etching or dry etching was also revealed to increased series resistance in ITO film. In this work, we report a new way of texturing by deposition of thickness-optimized ITO films on ITO nano dots, which can further reduce the reflectance as well as electrical degradation originated from the ITO etching process.

  • PDF

Electrical Properties of ITO and ZnO:Al Thin Films and Brightness Characteristics of PDP Cell with ITO and ZnO:Al Transparent Electrodes (ITO와 ZnO:Al 투명전도막의 전기적 특성 및 PDP 셀의 휘도 특성)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.6-13
    • /
    • 2006
  • Tin doped indium oxide(ITO) and Al doped zinc oxide(ZnO:Al) films, which are widely used as a transparent conductor in optoelectronic devices, were prepared by using the capacitively coupled DC magnetron sputtering method. ITO and ZnO:Al films with the optimum growth conditions showed each resistivity of $1.67{\times}10^{-3}[{\Omega}-cm],\;2.2{\times}10^{-3}[{\Omega}-cm]$ and transmittance of 89.61[%], 90.88[%] in the wavelength range of the visible spectrum. The two types of 5 inch-PDP cells with ZnO:Al and ITO transparent electrodes were made under the same manufacturing conditions. The PDP cell with ZnO:Al film was optimally operated in the mixing gas rate of Ne(base)-Xe(8[%]), and at gas pressure of 400[Torr]. It also shows the average measured brightness of $836[cd/m^2]$ at voltage range of $200{\sim}300$[V]. Luminous efficiency, one of the key parameter for high brightness and low power consumption, ranges from 1.2 to 1.6[lm/W] with increasing frequency of ac power supplier from 10 to 50[Khz]. The brightness and luminous efficiency are lower than those with ITO electrode by about 10[%]. However, these values are considered to be enough for the normal operation of PDP TV.

Measurement of Spatiotemporal Distribution for the Density of Excited Xe Atoms in the 1s5 in Accordance with Various ITO-shapes in Ac-PDP (교류형 플라즈마 평판 표시장치(AC-PDP)에서 ITO 전극 구조에 따른 Xe 여기종의 시공간 밀도 분포 연구)

  • Cho, S.H.;Hong, Y.J.;Son, C.G.;Han, Y.G.;Jeong, Y.H.;Gwon, G.C.;Hong, B.H.;Cho, G.S.;Choi, E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.54-59
    • /
    • 2009
  • We have measured the spatiotemporal behavior for the density of excited Xe atoms in the $1s_5$ metastable states by laser absorption spectroscopy in accordance with various shapes of ITO electrode. The maximum density of excited Xe atoms in the Is5 state in a discharge cell for fish-boned, T-shaped and squared ITO electrodes has been measured to be $3.01{\times}10^{13}\;cm^{-3}$, $2.66{\times}10^{13}\;cm^{-3}$ and $2.06{\times}10^{13}\;cm^{-3}$, respectively. Throughout this experiment, we could understand the influence of the shapes of ITO electrode of micro discharge cell on the high efficiency of AC-PDPs.

Study of SF6/Ar plasma based textured glass surface morphology for high haze ratio of ITO films in thin film solar cell

  • Kang, Junyoung;Hussain, Shahzada Qamar;Kim, Sunbo;Park, Hyeongsik;Le, Anh Huy Tuan;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.2-430.2
    • /
    • 2016
  • The front transparent conductive oxide (TCO) films in thin fill solar cell should exhibit high transparency, conductivity, good surface morphology and excellent light scattering properties. The light trapping phenomenon is limited due to random surface structure of TCO films. The proper control of surface structure and uniform cauliflower TCO films may be appropriate for efficient light trapping. We report light trapping scheme of ICP-RIE glass texturing by SF6/Ar plasma for high roughness and haze ratio of ITO films. It was observed that the variation of etching time, pattern size and Ar flow ratio during ICP-RIE process were important factors to improve the diffused transmittance and haze ratio of textured glass. The ICP-RIE textured glass showed low etching rates due to the presence of metal elements like Al, B, F and Na. The ITO films deposited on textured glass substrates showed the high RMS roughness and haze ratio in the visible wavelength region. The change in surface morphology showed negligible influence on electrical and structural properties of ITO films. The ITO films with high roughness and haze ratio can be used to improve the performance of thin film solar cells.

  • PDF

Electric field distribution and discharge characteristics in accordance with various ITO electrode structures in AC-PDP

  • Cho, Seok-H.;Oh, P.Y.;Kim, J.H.;Hong, Y.J.;Kwon, G.C.;Cho, G.S.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.396-399
    • /
    • 2008
  • In this study, the electric field distributions have been investigated by simulation in accordance with the various shapes of ITO-electrodes. Also we have measured the density of excited Xe atoms in the 1s5 state in discharge cell, where the gap distance of 60 um, gas pressure of 400 Torr, Xe contents of 7%, and sustaining voltage of 200 V are kept in this experiment. The maximum density of excited Xe atoms in the 1s5 state in a discharge cell for the fish-boned, T shaped and squared ITO electrodes have been measured to be $3.01\;{\times}\;10^{13}\;cm^{-3}$, $2.66\;{\times}\;10^{13}\;cm^{-3}$ and $2.06\;{\times}\;10^{13}\;cm^{-3}$, respectively. It is shown that the electric field distribution with different ITO Electrodes is essential factor for these maximum density of excited Xe atoms in discharge cell.

  • PDF

The effects of TCO/p-layer Interface on Amorphous Silicon Solar Cell (비정질 실리콘 태양전지에서 TCO/p층 계면 특성의 영향)

  • Ji, I.H.;Suh, S.T.;Choi, B.S.;Hong, S.M.
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.68-73
    • /
    • 1988
  • In the glass/TCO/p-i-n a-Si/Al type of amorphous silicon solar cell, the effects on solar cell efficiency and metastability for the various kinds of TCO analyzed by SAM and ESCA, which was used to measure the diffusion profiles of In and Sn and the Fermi energy shifts in the TCO/p interface respectively. Indium which diffused into a-Si p-layer did not have any significant effects on the Fermi level shift of p-layer when the content of $B_2H_6/SiH_4$ in p-layer was at 1 gas%. The cell fabricated on $SnO_2$ turned out to have the best cell photovoltaic characteristics. ITO fabricated by electron beam deposition system, which was shown to have the greatest rate of diffusion of Indium in ITO/p interface produced the worst metastability among the cells tested.

  • PDF

Electrical Properties of Organic Photovoltaic Cell using CuPc/$C_{60}$ double layer (CuPc/$C_{60}$ 이중층을 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Dong-Shin;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.744-746
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$Cu_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF