• 제목/요약/키워드: Iterative refinement

검색결과 36건 처리시간 0.025초

무릎 자기공명영상에서 지역적 확률 아틀라스 정렬 및 반복적 그래프 컷을 이용한 전방십자인대 분할 (Anterior Cruciate Ligament Segmentation in Knee MRI with Locally-aligned Probabilistic Atlas and Iterative Graph Cuts)

  • 이한상;홍헬렌
    • 정보과학회 논문지
    • /
    • 제42권10호
    • /
    • pp.1222-1230
    • /
    • 2015
  • 무릎 자기공명영상에서 전방십자인대의 분할은 밝기값의 불균일성 및 주변 조직들과의 유사 밝기값 특성으로 인해 기존 분할기법의 적용에 한계가 있다. 본 논문에서는 지역적 정렬을 통한 확률아틀라스 생성 및 반복적 그래프 컷을 통한 다중아틀라스 기반 전방십자인대 분할기법을 제안한다. 첫째, 전역 및 지역적 다중아틀라스 강체정합을 통해 전방십자인대의 확률아틀라스를 생성한다. 둘째, 생성된 확률아틀라스를 이용하여 최대사후추정 및 그래프 컷을 통하여 전방십자인대 초기 분할을 수행한다. 셋째, 마스크 기반 강체정합을 통한 형상정보 개선 및 반복적 그래프 컷을 통해 전방십자인대 분할 개선을 수행한다. 제안방법의 성능평가를 위하여 육안평가 및 정확성평가를 수행하였으며, 평가 결과 제안방법의 Dice 유사도는 75.0%, 평균표면거리는 1.7화소, 제곱근표면거리는 2.7화소로서 기존 그래프 컷 방법에 비하여 전방 십자인대의 분할정확도가 각각 12.8%, 22.7%, 및 22.9% 향상된 것으로 나타났다.

동적 프로그래밍에 기반한 윤곽선 근사화를 위한 정점 선택 방법 (Vertex Selection Scheme for Shape Approximation Based on Dynamic Programming)

  • 이시웅;최재각;남재열
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.121-127
    • /
    • 2004
  • This paper presents a new vertex selection scheme for shape approximation. In the proposed method, final vertex points are determined by "two-step procedure". In the first step, initial vertices are simply selected on the contour, which constitute a subset of the original contour, using conventional methods such as an iterated refinement method (IRM) or a progressive vertex selection (PVS) method In the second step, a vertex adjustment Process is incorporated to generate final vertices which are no more confined to the contour and optimal in the view of the given distortion measure. For the optimality of the final vertices, the dynamic programming (DP)-based solution for the adjustment of vertices is proposed. There are two main contributions of this work First, we show that DP can be successfully applied to vertex adjustment. Second, by using DP, the global optimality in the vertex selection can be achieved without iterative processes. Experimental results are presented to show the superiority of our method over the traditional methods.

접촉을 고려한 터보 압축기 로터의 안정성 해석 (Stability Analysis of Turbo Compressor Rotor Considering the Contact Phenomena)

  • 이승표;고병갑
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.75-80
    • /
    • 2007
  • It is necessary to analyze the contact phenomena in order to effectively design the machine components with contact surfaces. In general, the contact action is highly nonlinear and irreversible because we cannot predict the contact regions and conditions. Recently, the finite element method is used to analyze the contact problem. In this paper, the contact element method is applied to avoid the mesh refinement and iterative calculation of general contact algorithms. By use of it, the deformation and stress concentration of turbo compressor rotor are computed. It shown that the contact element is convenient analysis and the results are relatively accurate.

AN ITERATION SCHEMES FOR NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITIES

  • Wang, Hong-Jun;Song, Yi-Sheng
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.991-1002
    • /
    • 2011
  • An iterative algorithm is provided to find a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of some variational inequality in a Hilbert space. Using this result, we consider a strong convergence result for finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping. Our results include the previous results as special cases and can be viewed as an improvement and refinement of the previously known results.

반복적 호모그래피 개선에 의한 강건한 평면 추적 (Robust Planar Tracking Based on Iterative Homography Refinement)

  • 김가람;박정식;박한훈;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.302-305
    • /
    • 2012
  • 평면 추적(planar tracking) 기반의 카메라 추적에 있어, 특징 검출자의 반복성과 특징 기술자(descriptor)의 정합 성능에 따라서 떨림 현상(jitter)이 발생한다. 특히, 모바일 환경에서와 같은 연산력이 부족한 환경에서 고속화를 위해 특징 검출 및 기술 알고리즘을 간략화 시킬 경우, 이러한 떨림 현상은 심각한 문제가 된다. 본 논문에서는 이러한 문제를 해결하기 위해 입력 영상을 워핑(warping)하여 특징 점을 재검출한 후 카메라 영상과 참조 영상(reference image) 사이의 호모그래피를 보완하는 방법을 제안한다. 실험을 통해 제안된 방법이 특징 검출 및 기술 알고리즘의 성능을 보완하여 떨림 현상을 크게(70% 이상) 감소시킴을 확인하였다.

  • PDF

An Automated Adaptive Finite Element Mesh Generation for Dynamics

  • Yoon, Chongyul
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.83-88
    • /
    • 2019
  • Structural analysis remains as an essential part of any integrated civil engineering system in today's rapidly changing computing environment. Even with enormous advancements in capabilities of computers and mobile tools, enhancing computational efficiency of algorithms is necessary to meet the changing demands for quick real time response systems. The finite element method is still the most widely used method of computational structural analysis; a robust, reliable and automated finite element structural analysis module is essential in a modern integrated structural engineering system. To be a part of an automated finite element structural analysis, an efficient adaptive mesh generation scheme based on R-H refinement for the mesh and error estimates from representative strain values at Gauss points is described. A coefficient that depends on the shape of element is used to correct overly distorted elements. Two simple case studies show the validity and computational efficiency. The scheme is appropriate for nonlinear and dynamic problems in earthquake engineering which generally require a huge number of iterative computations.

A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

  • He, Shanshan;Ou, Daojiang;Yan, Changya;Lee, Chen-Han
    • Journal of Computational Design and Engineering
    • /
    • 제2권4호
    • /
    • pp.218-232
    • /
    • 2015
  • Piecewise linear (G01-based) tool paths generated by CAM systems lack $G_1$ and $G_2$ continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA) is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA) to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1) an improved technique for initial control point determination over Dominant Point Method, (2) an algorithm that updates foot point parameters as needed, (3) analysis of the degrees of freedom of control points to insert new control points only when needed, (4) chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

Saw-tooth softening/stiffening - a stable computational procedure for RC structures

  • Rots, Jan G.;Invernizzi, Stefano;Belletti, Beatrice
    • Computers and Concrete
    • /
    • 제3권4호
    • /
    • pp.213-233
    • /
    • 2006
  • Over the past years techniques for non-linear analysis have been enhanced significantly via improved solution procedures, extended finite element techniques and increased robustness of constitutive models. Nevertheless, problems remain, especially for real world structures of softening materials like concrete. The softening gives negative stiffness and risk of bifurcations due to multiple cracks that compete to survive. Incremental-iterative techniques have difficulties in selecting and handling the local peaks and snap-backs. In this contribution, an alternative method is proposed. The softening diagram of negative slope is replaced by a saw-tooth diagram of positive slopes. The incremental-iterative Newton method is replaced by a series of linear analyses using a special scaling technique with subsequent stiffness/strength reduction per critical element. It is shown that this event-by-event strategy is robust and reliable. First, the model is shown to be objective with respect to mesh refinement. Next, the example of a large-scale dog-bone specimen in direct tension is analyzed using an isotropic version of the saw-tooth model. The model is capable of automatically providing the snap-back response. Subsequently, the saw-tooth model is extended to include anisotropy for fixed crack directions to accommodate both tensile cracking and compression strut action for reinforced concrete. Three different reinforced concrete structures are analyzed, a tension-pull specimen, a slender beam and a slab. In all cases, the model naturally provides the local peaks and snap-backs associated with the subsequent development of primary cracks starting from the rebar. The secant saw-tooth stiffness is always positive and the analysis always 'converges'. Bifurcations are prevented due to the scaling technique.

대용량 3차원 구조의 정전용량 계산을 위한 Fast Algorithm (Fast Algorithm for the Capacitance Extraction of Large Three Dimensional Object)

  • 김한;안창회
    • 한국전자파학회논문지
    • /
    • 제14권1호
    • /
    • pp.27-32
    • /
    • 2003
  • 본 논문에서는 수 만개 이상의 미지수를 필요로 하는 복잡한 3차원 구조에서의 정전용량 추출을 위한 고속화 알고리즘(Fast mutilpole method)과 결합한 효과적인 적응 삼각요소 분할법(Adaptive triangular mesh refinement algorithm)을 제안하였다. 적응 삼각요소 분할법은 3차원 물체의 표면을 초기요소로 분할하여 전하의 분포를 구하고, 전하밀도가 높은 영역에서의 요소세분화를 수행하여 이루어진다. 제안된 방법을 이용하여 많은 미지수를 필요로 하는 68-pin cerquad package구조에서의 정전용량을 추출하였다.

A Tailless UAV Multidisciplinary Design Optimization Using Global Variable Fidelity Modeling

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.662-674
    • /
    • 2017
  • This paper describes the multidisciplinary design optimization (MDO) process of a tailless unmanned combat aerial vehicle (UCAV) using global variable fidelity aerodynamic analysis. The developed tailless UAV design framework combines multiple disciplines that are based on low-fidelity and empirical analysis methods. An automated high-fidelity aerodynamic analysis is efficiently integrated into the MDO framework. Global variable fidelity modeling algorithm manages the use of the high-fidelity analysis to enhance the overall accuracy of the MDO by providing the initial sampling of the design space with iterative refinement of the approximation model in the neighborhood of the optimum solution. A design formulation was established considering a specific aerodynamic, stability and control design features of a tailless aircraft configuration with a UCAV specific mission profile. Design optimization problems with low-fidelity and variable fidelity analyses were successfully solved. The objective function improvement is 14.5% and 15.9% with low and variable fidelity optimization respectively. Results also indicate that low-fidelity analysis overestimates the value of lift-to-drag ratio by 3-5%, while the variable fidelity results are equal to the high-fidelity analysis results by algorithm definition.