• 제목/요약/키워드: Iterative load

검색결과 188건 처리시간 0.023초

위치 오차를 갖는 2관성 공진계에 대한 반복학습 제어의 적용에 관한 연구 (Application of Iterative Learning Control to 2-Mass Resonant System with Initial Position Error)

  • 이학성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.307-310
    • /
    • 2003
  • In this paper, an iterative learning control method is applied to suppress the vibration of a 2-mass system which has a flexible coupling between a load an a motor. More specifically, conditions for the load speed without vibration are derived based on the steady-state condition. And the desired motor position trajectory is synthesized based on the relation between the load and motor speed. Finally, a PD-type learning iterative control law is applied for the desired motor position trajectory. Since the learning law applied for the desired trajectory guarantees the perfect tracking performance, the resulting load speed shows no vibration. In order to handle the initial position error, the PD-type learning law is changed to PID-type and a weight function is added to suppress the residual vibration caused by the initial error. The simulation results show the effectiveness of the proposed learning method.

  • PDF

반복계산법을 사용한 배전계통 1선지락사고 고장거리 계산 알고리즘에서 부하변동의 영향 고찰 (A Study on the Effect of Load Variations in a Line to Ground Fault Location Algorithm Using Iterative Method for Distribution Power Systems)

  • 최면송;이승재;현승호;진보건;이덕수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.355-362
    • /
    • 2003
  • The fault analysis problem of a distribution network has many difficulties comes from the unbalance of loads or networks and the lacks of load information. The unbalance of loads or networks make the fault location difficult when it use the classical sequence transformation. Moreover the amount of load in the distribution networks fluctuates with time. This paper introduces a recent fault location algorithm using iterative method which handle the unbalance of the problem. But, the fault location errors comes from the load fluctuations still left. For the real application of the new fault location algorithm in distribution networks, this paper studied the effect of the load fluctuations in the algorithm.

Aggregation multigrid method for schur complement system in FE analysis of continuum elements

  • Ko, Jin-Hwan;Lee, Byung Chai
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.467-480
    • /
    • 2008
  • An aggregation multigrid method (AMM) is a leading iterative solver in solid mechanics. Recently, AMM is applied for solving Schur Complement system in the FE analysis of shell structures. In this work, an extended application of AMM for solving Schur Complement system in the FE analysis of continuum elements is presented. Further, the performance of the proposed AMM in multiple load cases, which is a challenging problem for an iterative solver, is studied. The proposed method is developed by combining the substructuring and the multigrid methods. The substructuring method avoids factorizing the full-size matrix of an original system and the multigrid method gives near-optimal convergence. This method is demonstrated for the FE analysis of several elastostatic problems. The numerical results show better performance by the proposed method as compared to the preconditioned conjugate gradient method. The smaller computational cost for the iterative procedure of the proposed method gives a good alternative to a direct solver in large systems with multiple load cases.

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

반복 학습 제어를 이용한 2관성 공진계의 위치 제어에 관한 연구 (A Study on Position Control of 2-Mass Resonant System Using Iterative Learning Control)

  • 이학성;문승빈
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.693-698
    • /
    • 2004
  • 2관성 공진계는 전동기와 부하 사이에 탄성이 있는 동력 전달 체계를 포함하는 시스템으로 고속 제어시 진동이 발생된다. 본 논문에서는 반복 학습 제어를 이용하여 이와 같은 2관성 공진계의 위치 제어에 대한 진동 억제 기법을 제안한다. 제안된 기법은 측정하기 어려운 부하에 대해 진동이 발생하지 않는 속도궤적을 산출하고 이에 해당하는 전동기 속도 및 위치 궤적에 대해 반복 학습 제어기법을 적용하는 방식으로 구성되어 있다. 또한 초기 위치 오차에 의해 발생되는 진동을 억제하기 위한 방법도 제시된다. 제안된 방법은 2 관성 공진계에 대한 모델링이 정확하지 않더라도 진동 없이 정확한 위치 제어가 가능하다.

2관성 공진계에 대한 반복 학습 제어의 응용에 관한 연구 (Study on Application of Iterative Learning Control to 2-Mass Resonant System)

  • 이학성;문승빈;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.42-46
    • /
    • 2004
  • A 2-mass resonant system is one that has a flexible coupling between a load and a driving motor. Due to this flexibility, the system often suffers vibration especially when the motor is controlled for higher speed command. In order to suppress such a vibration, an iterative learning control is applied to the 2-mass resonant system in this paper. The motor speed is controlled according to the relation with the load speed. The desired speed trajectories are derived under the condition for no vibration. The simulation result suggests that the proposed method effectively suppresses the vibration even when there exist model uncertainties.

최단 전압붕괴 임계점을 계산하는 알고리즘의 특성 비교 (Comparative Performance Study of Various Algorithms Computing the Closest Voltage Collapse Point)

  • 송충기;남해곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1078-1082
    • /
    • 1997
  • The distance in load parameter space to the closest voltage collapse point provides the worst case power margin and the left eigenvector identifies the most effective direction to steer the system to maximize voltage stability under contingency. This paper presents the results of the comparative performance study of the algorithms, which are applicable to a large scale power system, for computing the closest saddle node bifurcation (CSNB) point. Dobson's iterative method converges with robustness. However the slow process of updating the load increasing direction makes the algorithm less efficient. The direct method converges very quickly. But it diverges if the initial guess is not very close to CSNB. Zeng's method of estimating the approximate critical point in the pre-determined direction is attractive in the sense that it uses only using load flow equations. However, the method is found to be less efficient than Dobson's iterative method. It may be concluded from the above observation that the direct method with the initial values obtained by carrying out the iterative method twice is most efficient at this time and more efficient algorithms are needed for on-line application.

  • PDF

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.

과도 안정도 해석을 위한 다기 계통 2축 모델을 이용한 확장 비반복 알고리즘 (Extended Noniterative Algorithm Using Multi-machine Two-Axis Model for Transient Stability Analysis)

  • 진원석;권용준;문영현;최병곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.125-127
    • /
    • 2003
  • The Conventional time-domain simulation of transient stability requires iterative calculation procedures to consider the saliency of generator. Recently, a non-iterative algorithm has successfully developed to take into account the generator saliency exactly with the use of $E_q'$-model. This study proposes an extended non-iterative algorithm by adopting the two-axis generator model. Given internal voltages and rotor angles of the generators, network voltages and generator currents can be directly calculated by solving a linear algebraic equation, which enables us to reduce the computation time remarkably.

  • PDF