• Title/Summary/Keyword: Iterative PID Control

Search Result 19, Processing Time 0.032 seconds

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.

Position Control of Electro Hydraulic Actuator (EHA) using an Iterative Learning Control (반복 학습제어를 이용한 전기유압액추에이터의 위치제어)

  • Nam, D.N.C.;Tri, N.M.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents the development of a compact position generator to be used for industrial purposes based on a pump controlled Electro-Hydraulic Actuator (EHA), which is closed-loop controlled by an embedded based Iterative PID controller. The controller is designed by combining the PID controller and the iterative learning scheme to perform tracking control for periodically desired references. Control algorithm is implemented on an embedded computer (AD 7011-EVA) which makes the implementation and application in industrial environments easier.

Design of robust iterative learning controller for linear plant with initial error and time-delay (초기 오차와 시간 지연을 고려한 선형 플랜트에 대한 강인한 반복 학습 제어기의 설계)

  • 박광현;변증남;황동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.335-338
    • /
    • 1996
  • In this paper, we are going to design an iterative learning controller with the robust properties for initial error. For this purpose, the PID-type learning law will be considered and the design guide-line will be presented for the selection of the learning gain. Also, we are going to suggest a condition for the convergence of control input for a plant with input delay. Several simulation results are presented, which shows the effectiveness of the proposed algorithms.

  • PDF

Iterative Tuning of PID Controller by Fuzzy Indirect Reasoning and a Modified Zigler-Nichols Method (퍼지 간접추론법과 수정형 지글러-니콜스법에 의한 비례-적분-미분 제어기의 점진적 동조)

  • Kim, S.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.74-83
    • /
    • 1996
  • An iterative tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the following tuning process can be made effectively. The design paramaters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proposed tuning method can produce an effective tuning for arbitrary design performances.

  • PDF

Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm

  • Bevrani, Hassan;Hiyama, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.117-127
    • /
    • 2007
  • Many real world control systems usually track several control objectives, simultaneously. At the moment, it is desirable to meet all specified goals using the controllers with simple structures like as proportional-integral (PI) and proportional-integral-derivative (PID) which are very useful in industry applications. Since in practice, these controllers are commonly tuned based on classical or trial-and-error approaches, they are incapable of obtaining good dynamical performance to capture all design objectives and specifications. This paper addresses a new method to bridge the gap between the power of optimal multiobjective control and PI/PID industrial controls. First the PI/PID control problem is reduced to a static output feedback control synthesis through the mixed $H_2/H_{\infty}$ control technique, and then the control parameters are easily carried out using an iterative linear matrix inequalities (ILMI) algorithm. Numerical examples on load-frequency control (LFC) and power system stabilizer (PSS) designs are given to illustrate the proposed methodology. The results are compared with genetic algorithm (GA) based multiobjective control and LMI based full order mixed $H_2/H_{\infty}$ control designs.

Thrust and Propellant Mixture Ratio Control of Open Type Liquid Propellant Rocket Engine (개방형 액체추진제로켓엔진의 추력 및 혼합비 제어)

  • Jung, Young-Suk;Lee, Jung-Ho;Oh, Seung-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1143-1148
    • /
    • 2007
  • LRE(Liquid propellant Rocket Engine) is one of the important parts to control the motion of rocket. For operation of rocket in error boundary of the set-up trajectory, it is necessarily to control the thrust of LRE according to the required thrust profile and control the mixture ratio of propellants fed into combustor for the constant mixture ratio. It is not easy to control thrust and mixture ratio of propellants since there are co-interferences among the components of LRE. In this study, the dynamic model of LRE was constructed and the dynamic characteristics were analyzed with control system as PID control and PID+Q-ILC(Iterative Learning Control with Quadratic Criterion) control. From the analysis, it could be observed that PID+Q-ILC control logic is more useful than standard PID control system for control of LRE.

  • PDF

Video Quality Variation Minimizing Method using PID Controller (PID 제어기를 이용한 영상 품질 변화 최소화 방법)

  • Park, Sang-Hyun;Kang, Eui-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2009-2014
    • /
    • 2007
  • A novel method of minimizing video quality variation is proposed for a real-time frame-layer rate control algorithm with a transmission buffer. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize variation in distortion between frames. In order to reflect the buffer status, we use well-known PID control method. Computational complexity of PID control is very low, so the proposed algorithm is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better PSNR performance than the existing rate control method.

Disturbance Observer Design for a Non-minimum Phase System That Is Stabilizable via PID Control (PID 제어기로 안정화 가능한 비최소 위상 시스템에 대한 외란 관측기 설계)

  • Son, Young-Ik;Kim, Sung-Jong;Jeong, Goo-Jong;Shim, Hyung-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1612-1617
    • /
    • 2008
  • Since most disturbance observer (DOB) approaches have been limited to minimum-phase systems (or systems having no zero dynamics), we propose a new DOB structure that can be applied to non-minimum phase systems. The new structure features an additional system, which is called as V-filter, whose role is to yield a minimum phase system when connected with the plant in parallel. In order to design the V-filter systematically we first consider a class of linear systems that can be stabilized via PID controller. By inverting the controller's transfer function, we can simply construct the filter. A convenient way of designing V-filter is presented by using an iterative linear matrix inequality (LMI) algorithm. With an illustrative example the simulation result shows that substantial improvement in the performance has been achieved compared with the control system without the DOB.

Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot (이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현)

  • Lim, Dong-Cheol;Kuc, Tae-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.

Application of Iterative Learning Control to 2-Mass Resonant System with Initial Position Error (위치 오차를 갖는 2관성 공진계에 대한 반복학습 제어의 적용에 관한 연구)

  • Lee, Hak-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.307-310
    • /
    • 2003
  • In this paper, an iterative learning control method is applied to suppress the vibration of a 2-mass system which has a flexible coupling between a load an a motor. More specifically, conditions for the load speed without vibration are derived based on the steady-state condition. And the desired motor position trajectory is synthesized based on the relation between the load and motor speed. Finally, a PD-type learning iterative control law is applied for the desired motor position trajectory. Since the learning law applied for the desired trajectory guarantees the perfect tracking performance, the resulting load speed shows no vibration. In order to handle the initial position error, the PD-type learning law is changed to PID-type and a weight function is added to suppress the residual vibration caused by the initial error. The simulation results show the effectiveness of the proposed learning method.

  • PDF