• Title/Summary/Keyword: Iterative Error Analysis

Search Result 122, Processing Time 0.033 seconds

Takagi-Sugeno Fuzzy Model-based Iterative Learning Control Systems: A Two-dimensional System Theory Approach

  • Chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.3-169
    • /
    • 2001
  • This paper introduces a new approach to analysis of error convergence for a class of iterative learning control systems. First, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established in the form of T-S fuzzy model. We analysis the error convergence in the sense of induced 2 L -norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative learning controller design problem to guarantee the error convergence can be reduced to linear matrix inequality problems. In comparison with others, our learning algorithm ...

  • PDF

Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach (Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법)

  • Chu, Jun-Uk;Lee, Yun-Jung;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.385-392
    • /
    • 2002
  • This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.

Blockwise analysis for solving linear systems of equations

  • Smoktunowicz, Alicja
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.31-41
    • /
    • 1999
  • We investigate some techniques of iterative refinement of solutions of a nonsingular system Ax = b with A partitioned into blocks using only single precision arithmetic. We prove that iterative refinement improves a blockwise measure of backward stability. Some applications of the results for the least squares problem (LS) will be also considered.

  • PDF

A modification of double projection method for adaptive analysis of Element-free Galerkin Method (적응적 Element-free Galerkin Method 해석을 위한 이중투영법의 개선)

  • 이계희;정흥진;이태열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.615-622
    • /
    • 2002
  • In this paper, the modification of double projection method for the adaptive analysis of Element-free Galerkin(EFG) method were proposed. As results of the double projection method, the smoothed error profile that is adequate for adaptive analysis was obtained by re-projection of error that means the differences of EFG stress and projected stress. However, it was found that the efficiency of double projection method is degraded as increase of the numerical integration order. Since, the iterative refinement to single step error estimation made the same effect as increasing of integration order, the application of the iterative refinement base on double projection method could be produced the inadequately refined analysis model. To overcome this defect, a modified scheme of double projection were proposed. In the numerical example, the results did not show degradation of double projection effect in iterative refinement and the efficiency of proposed scheme were proved.

  • PDF

Hyperspectral Target Detection by Iterative Error Analysis based Spectral Unmixing (Iterative Error Analysis 기반 분광혼합분석에 의한 초분광 영상의 표적물질 탐지 기법)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.547-557
    • /
    • 2017
  • In this paper, a new spectral unmixing based target detection algorithm is proposed which adopted Iterative Error Analysis as a tool for extraction of background endmembers by using the target spectrum to be detected as initial endmember. In the presented method, the number of background endmembers is automatically decided during the IEA by stopping the iteration when the maximum change in abundance of the target is less than a given threshold value. The proposed algorithm does not have the dependence on the selection of image endmembers in the model-based approaches such as Orthogonal Subspace Projection and the target influence on the background statistics in the stochastic approaches such as Matched Filter. The experimental result with hyperspectral image data where various real and simulated targets are implanted shows that the proposed method is very effective for the detection of both rare and non-rare targets. It is expected that the proposed method can be effectively used for mineral detection and mapping as well as target object detection.

An Iterative Learning Control for the Precision Improvement of a CNC Machining center (CNC 머시닝센터의 정밀도 향상을 위한 반복학습제어)

  • 최종호;유경열;장태정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 1995
  • We made a counter to measure the output of motor encoders for the motion error analysis of a CNC machining center, and have measured the dynamic characteristics and the position errors experimentally. Especially, we measured the radius errors for different feedrates and different radii when the CNC machining center performed a circular interpolation. We have also used an iterative learning method to reduce the radius errors and stick motion errors generated by the CNC machining center performing a circular interpolation. The results show that the proposed learning scheme can reduce the radius error and stick motion error significantly. The reduction of errors becomes more pronounced for higher feedrate and smaller radius.

Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector (접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석)

  • Lee, Kisu;Kim, Bang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.305-319
    • /
    • 2000
  • Numerical solution lot frictional contact problems of nonlinearly deformable bodies having large deformation is presented. The contact conditions on the possible contact points are expressed by using the contact error vector, and the iterative scheme is used to reduce the contact error vector monotonically toward zero. At each iteration the solution consists of two steps : The first step is to revise the contact force by using the contact error vector given by the previous geometry, and the second step is to compute the displacement and the contact error vector by solving the equilibrium equation with the contact force given at the first step. Convergence of the iterative scheme to the correct solution is analyzed, and the numerical simulations we performed with a rigid-plastic membrane and a nonlinear elastic beam.

  • PDF

A New Correction Algorithm of Servo Track Writing Error in High-Density Disk Drives (고밀도 디스크 드라이브의 서보트랙 기록오차 보정 알고리즘)

  • 강창익;김창환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.284-295
    • /
    • 2003
  • The servo tracks of disk drives are constructed at the time of manufacture with the equipment of servo track writer. Because of the imperfection of servo track writer, disk vibrations and head fluctuations during servo track writing process, the constructed servo tracks might deviate from perfect circles and take eccentric shapes. The servo track writing error should be corrected because it might cause interference with adjacent tracks and irrecoverable operation error of disk drives. The servo track writing error is repeated every disk rotation and so is periodic time function. In this paper, we propose a new correction algorithm of servo track writing error based on iterative teaming approach. Our correction algorithm can learn iteratively the servo track writing error as accurately as is desired. Furthermore, our algorithm is robust to system model errors, is computationally simple, and has fast convergence rate. In order to demonstrate the generality and practical use of our work, we present the convergence analysis of our correction algorithm and some simulation results.

Satellite Attitude Control with a Modified Iterative Learning Law for the Decrease in the Effectiveness of the Actuator

  • Lee, Ho-Jin;Kim, You-Dan;Kim, Hee-Seob
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.87-97
    • /
    • 2010
  • A fault tolerant satellite attitude control scheme with a modified iterative learning law is proposed for dealing with actuator faults. The actuator fault is modeled to reflect the degradation of actuation effectiveness, and the solar array-induced disturbance is considered as an external disturbance. To estimate the magnitudes of the actuator fault and the external disturbance, a modified iterative learning law using only the information associated with the state error is applied. Stability analysis is performed to obtain the gain matrices of the modified iterative learning law using the Lyapunov theorem. The proposed fault tolerant control scheme is applied to the rest-to-rest maneuver of a large satellite system, and numerical simulations are performed to verify the performance of the proposed scheme.

AN ITERATIVE METHOD FOR ORTHOGONAL PROJECTIONS OF GENERALIZED INVERSES

  • Srivastava, Shwetabh;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.61-74
    • /
    • 2014
  • This paper describes an iterative method for orthogonal projections $AA^+$ and $A^+A$ of an arbitrary matrix A, where $A^+$ represents the Moore-Penrose inverse. Convergence analysis along with the first and second order error estimates of the method are investigated. Three numerical examples are worked out to show the efficacy of our work. The first example is on a full rank matrix, whereas the other two are on full rank and rank deficient randomly generated matrices. The results obtained by the method are compared with those obtained by another iterative method. The performance measures in terms of mean CPU time (MCT) and the error bounds for computing orthogonal projections are listed in tables. If $Z_k$, k = 0,1,2,... represents the k-th iterate obtained by our method then the sequence of the traces {trace($Z_k$)} is a monotonically increasing sequence converging to the rank of (A). Also, the sequence of traces {trace($I-Z_k$)} is a monotonically decreasing sequence converging to the nullity of $A^*$.