• Title/Summary/Keyword: Iterative Data-Flow

Search Result 52, Processing Time 0.026 seconds

Modular Program for Conceptual Design of Liquid Rocket Engine System, Part II : Integration of Modular Program (액체 로켓 엔진시스템 개념설계를 위한 모듈화 프로그램 Part II: 통합 모듈화 프로그램)

  • Park, Byung-Hoon;Yang, Hee-Sung;Kim, Won-Ho;Yoon, Woong-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.816-825
    • /
    • 2007
  • With a view to building up a program used in conceptual design of liquid rocket engine system, a preliminary performance-based code for an integrated engine system has been developed by incorporating sub-modular programs for each essential engine component. Modular descriptions for each component were formulated mathematically with essential parameters. In the whole iterative circuits for predicting engine performance, matching conditions of mass flow rate and pressure drop through each engine component have been considered. Mass balance calculations at each inter-component boundary are found smoothly converged. All the pressure drops through engine components as a function of mass flow rate are added up to provide turbo-pump outlet condition. In this paper, the flow chart for each iterative circuit and design methodologies are presented. Resultant predictions are validated with real engine data.

Cooling Flow Characteristics of an Impinging Liquid Jet Using ALE Finite Element Method (ALE 유한요소법에 의한 충돌 액체 분류 냉각 유동 특성 해석)

  • Sung, Jaeyong;Choi, Hyoung Gwon;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.43-57
    • /
    • 1999
  • The fluid flow and heat transfer in a thin liquid film are investigated numerically. The flow Is assumed to be two-dimensional laminar and surface tension is considered. The most important characteristics of this flow is the existence of a hydraulic jump through which the flow undergoes very sharp and discontinuous change. Arbitrary Lagrangian-Eulerian(ALE) method is used to describe moving free boundary and a modified SIMPLE algorithm based on streamline upwind Petrov-Galerkin(SUPG) finite element method is used for time marching iterative solution. The numerical results obtained by solving unsteady full Navier-Stokes equations are presented for planar and radial flows subject to constant wall temperature or constant wall heat flux, and compared with available experimental data. It Is discussed systematically how the inlet Reynolds and Froude numbers and surface tension affect the formation of a hydraulic jump. In particular, the effect of temperature dependent fluid properties is also discussed.

A method for predicting the aerodynamic performance of low-speed airfoils (저속익형의 공기역학적 성능예측의 한 방법)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.

Development of Statistical Modeling Methodology for Flow Accelerated Corrosion: Effect of Flow Rate, Water Temperature, pH, and Cr Content (유동가속부식에 대한 통계적 모델링 해석방법 개발: 유속, 온도, pH 및 Cr 함량의 효과)

  • Lee, Gyeong-Geun;Lee, Eun Hee;Kim, Sung-Woo;Kim, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.40-49
    • /
    • 2016
  • Flow accelerated corrosion (FAC) of the carbon steel piping has been a significant problem in nuclear power plants. FAC occurs under certain hydrodynamic, environmental, and material conditions, and extensive research into the factors of FAC has been conducted. The basic process of FAC is now relatively well understood; however, a full mechanistic model has not yet been established. Recently, the Korea Atomic Energy Research Institute (KAERI) has built a large experiment loop system for FAC. To produce significant experimental results using this system, the factors affecting on FAC should be analyzed quantitatively, and a model needs to be developed. In this work, a statistical modeling methodology to develop an empirical model is described in detail, and a preliminary model is suggested. Firstly, FAC data were collected from the research literature in Japan and the results of domestic experiments. The flow rate, water temperature, pH at room temperature, and the Cr content are selected as major factors, and nonlinear regression is used to find the best fit of the available data. An iterative procedure between suggesting and evaluating a model is used until an optimum model is obtained. The developed model gives the FAC rate comparable to the measured FAC rate. The developed model is going to be refined using additional laboratory data in the future.

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF

Development of Chemical Equilibrium CFD Code for Performance Prediction and Optimum Design of LRE Thrust Chamber (액체로켓 추력실의 성능 예측 및 최적 형상 설계를 위한 해석코드 개발)

  • 김성구;박태선;문윤완
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.57-60
    • /
    • 2003
  • An axisymmetric compressible flow solver accounting for chemical equilibrium has been developed as an analysis tool exclusively suitable for performance prediction and optimum contour design of LRE thrust chamber. By virtue of several features focusing on user-friendliness and effectiveness including automatical grid generation and iterative calculations with changes in design parameters prescribed through only one keyword-type input file, a design engineer can evaluate very fast and easily the influences of various design inputs such as geometrical parameters and operating conditions on propulsive performance. Validations have been carried out for various aspects by detailed comparisons with the result of CEA code, experimental data of JPL nozzle, actual data for two historical engines, and ReTF data for KSR-III.

  • PDF

Potential How Analysis for a Hull with the Transom Stern (트랜섬 선미를 가지는 선형의 포텐셜 유동해석)

  • 최희종;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This study focuses on the potential flow analysis for a hull with the transom stern. The method is based on a low order panel method. The Kelvin type free-surface boundary condition which is known to better fit experimental data for a high speed is applied. To treat a dry transom stern effect a special treatment for the free-surface boundary condition is adopted at the free-surface region after the transom stern. Trim and sinkage, which are important in high speed ships, are considered by an iterative method. Pressure and momentum approaches are used to calculate the wave resistance. Numerical calculations are performed for Athena hull and these results are compared with the experimental data and also other computational results.

  • PDF

A Vorticity-Based Method for Incompressible Viscous Flow Analysis (와도를 기저로 한 비압축성 점성유동해석 방법)

  • Suh J. C.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.