• Title/Summary/Keyword: Iterative Clustering

검색결과 55건 처리시간 0.024초

Super-Pixels Generation based on Fuzzy Similarity (퍼지 유사성 기반 슈퍼-픽셀 생성)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제17권2호
    • /
    • pp.147-157
    • /
    • 2017
  • In recent years, Super-pixels have become very popular for use in computer vision applications. Super-pixel algorithm transforms pixels into perceptually feasible regions to reduce stiff features of grid pixel. In particular, super-pixels are useful to depth estimation, skeleton works, body labeling, and feature localization, etc. But, it is not easy to generate a good super-pixel partition for doing these tasks. Especially, super-pixels do not satisfy more meaningful features in view of the gestalt aspects such as non-sum, continuation, closure, perceptual constancy. In this paper, we suggest an advanced algorithm which combines simple linear iterative clustering with fuzzy clustering concepts. Simple linear iterative clustering technique has high adherence to image boundaries, speed, memory efficient than conventional methods. But, it does not suggest good compact and regular property to the super-pixel shapes in context of gestalt aspects. Fuzzy similarity measures provide a reasonable graph in view of bounded size and few neighbors. Thus, more compact and regular pixels are obtained, and can extract locally relevant features. Simulation shows that fuzzy similarity based super-pixel building represents natural features as the manner in which humans decompose images.

K-means clustering using a center of gravity for grid-based sample (그리드 기반 표본의 무게중심을 이용한 케이-평균군집화)

  • Lee, Sun-Myung;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권1호
    • /
    • pp.121-128
    • /
    • 2010
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

Mobile Base Station Placement with BIRCH Clustering Algorithm for HAP Network (HAP 네트워크에서 BIRCH 클러스터링 알고리즘을 이용한 이동 기지국의 배치)

  • Chae, Jun-Byung;Song, Ha-Yoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • 제15권10호
    • /
    • pp.761-765
    • /
    • 2009
  • This research aims an optimal placement of Mobile Base Station (MBS) under HAP based network configurations with the restrictions of HAP capabilities. With clustering algorithm based on BIRCH, mobile ground nodes are clustered and the centroid of the clusters will be the location of MBS. The hierarchical structure of BIRCH enables mobile node management by CF tree and the restrictions of maximum nodes per MBS and maximum radio coverage are accomplished by splitting and merging clusters. Mobility models based on Jeju island are used for simulations and such restrictions are met with proper placement of MBS.

A Comparison of Superpixel Characteristics based on SLIC(Simple Linear Iterative Clustering) for Color Feature Spaces (칼라특징공간별 SLIC기반 슈퍼픽셀의 특성비교)

  • Lee, Jeong Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • 제10권4호
    • /
    • pp.151-160
    • /
    • 2014
  • In this paper, a comparison of superpixel characteristics based on SLIC(simple linear iterative clustering) for several color feature spaces is presented. Computer vision applications have come to rely increasingly on superpixels in recent years. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. A superpixel is consist of pixels with similar features such as luminance, color, textures etc. Thus superpixels are more efficient than pixels in case of large scale image processing. Generally superpixel characteristics are described by uniformity, boundary precision and recall, compactness. However previous methods only generate superpixels a special color space but lack researches on superpixel characteristics. Therefore we present superpixel characteristics based on SLIC as known popular. In this paper, Lab, Luv, LCH, HSV, YIQ and RGB color feature spaces are used. Uniformity, compactness, boundary precision and recall are measured for comparing characteristics of superpixel. For computer simulation, Berkeley image database(BSD300) is used and Lab color space is superior to the others by the experimental results.

One-step spectral clustering of weighted variables on single-cell RNA-sequencing data (단세포 RNA 시퀀싱 데이터를 위한 가중변수 스펙트럼 군집화 기법)

  • Park, Min Young;Park, Seyoung
    • The Korean Journal of Applied Statistics
    • /
    • 제33권4호
    • /
    • pp.511-526
    • /
    • 2020
  • Single-cell RNA-sequencing (scRNA-seq) data consists of each cell's RNA expression extracted from large populations of cells. One main purpose of using scRNA-seq data is to identify inter-cellular heterogeneity. However, scRNA-seq data pose statistical challenges when applying traditional clustering methods because they have many missing values and high level of noise due to technical and sampling issues. In this paper, motivated by analyzing scRNA-seq data, we propose a novel spectral-based clustering method by imposing different weights on genes when computing a similarity between cells. Assigning weights on genes and clustering cells are performed simultaneously in the proposed clustering framework. We solve the proposed non-convex optimization using an iterative algorithm. Both real data application and simulation study suggest that the proposed clustering method better identifies underlying clusters compared with existing clustering methods.

Road network data matching using the network division technique (네트워크 분할 기법을 이용한 도로 네트워크 데이터 정합)

  • Huh, Yong;Son, Whamin;Lee, Jeabin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제31권4호
    • /
    • pp.285-292
    • /
    • 2013
  • This study proposes a network matching method based on a network division technique. The proposed method generates polygons surrounded by links of the original network dataset, and detects corresponding polygon group pairs using a intersection-based graph clustering. Then corresponding sub-network pairs are obtained from the polygon group pairs. To perform the geometric correction between them, the Iterative Closest Points algorithm is applied to the nodes of each corresponding sub-networks pair. Finally, Hausdorff distance analysis is applied to find link pairs of networks. To assess the feasibility of the algorithm, we apply it to the networks from the KTDB center and commercial CNS company. In the experiments, several Hausdorff distance thresholds from 3m to 18m with 3m intervals are tested and, finally, we can get the F-measure of 0.99 when using the threshold of 15m.

Clustering Characteristics and Class Hierarchy Generation in Object-Oriented Development (객체지향개발에서의 속성 클러스터링과 클래스 계층구조생성)

  • Lee Gun Ho
    • The KIPS Transactions:PartD
    • /
    • 제11D권7호
    • /
    • pp.1443-1450
    • /
    • 2004
  • The clustering characteristics for a number of classes, and defining the inheritance relations between the classes is a difficult and complex problem in an early stage of object oriented software development. We discuss a traditional iterative approach for the reuse of the existing classes in a library and an integrated approach to creating a number of new classes presented in this study. This paper formulates a character-istic clustering problem for zero-one integer programming and presents a network solution method with illustrative examples and the basic rules to define the inheritance relations between the classes. The network solution method for a characteristic clustering problem is based on a distance parameter between every pair of objects with characteristics. We apply the approach to a real problem taken from industry.

NOGSEC: A NOnparametric method for Genome SEquence Clustering (녹섹(NOGSEC): A NOnparametric method for Genome SEquence Clustering)

  • 이영복;김판규;조환규
    • Korean Journal of Microbiology
    • /
    • 제39권2호
    • /
    • pp.67-75
    • /
    • 2003
  • One large topic in comparative genomics is to predict functional annotation by classifying protein sequences. Computational approaches for function prediction include protein structure prediction, sequence alignment and domain prediction or binding site prediction. This paper is on another computational approach searching for sets of homologous sequences from sequence similarity graph. Methods based on similarity graph do not need previous knowledges about sequences, but largely depend on the researcher's subjective threshold settings. In this paper, we propose a genome sequence clustering method of iterative testing and graph decomposition, and a simple method to calculate a strict threshold having biochemical meaning. Proposed method was applied to known bacterial genome sequences and the result was shown with the BAG algorithm's. Result clusters are lacking some completeness, but the confidence level is very high and the method does not need user-defined thresholds.

A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information (슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • 제11권4호
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

Extended High Dimensional Clustering using Iterative Two Dimensional Projection Filtering (반복적 2차원 프로젝션 필터링을 이용한 확장 고차원 클러스터링)

  • Lee, Hye-Myeong;Park, Yeong-Bae
    • The KIPS Transactions:PartD
    • /
    • 제8D권5호
    • /
    • pp.573-580
    • /
    • 2001
  • The large amounts of high dimensional data contains a significant amount of noises by it own sparsity, which adds difficulties in high dimensional clustering. The CLIP is developed as a clustering algorithm to support characteristics of the high dimensional data. The CLIP is based on the incremental one dimensional projection on each axis and find product sets of the dimensional clusters. These product sets contain not only all high dimensional clusters but also they may contain noises. In this paper, we propose extended CLIP algorithm which refines the product sets that contain cluster. We remove high dimensional noises by applying two dimensional projections iteratively on the already found product sets by CLIP. To evaluate the performance of extended algorithm, we demonstrate its effectiveness through a series of experiments on synthetic data sets.

  • PDF