• Title/Summary/Keyword: Iterative Clustering

Search Result 55, Processing Time 0.022 seconds

Determining the Optimal Number of Signal Clusters Using Iterative HMM Classification

  • Ernest, Duker Junior;Kim, Yoon Joong
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.33-37
    • /
    • 2018
  • In this study, we propose an iterative clustering algorithm that automatically clusters a set of voice signal data without a label into an optimal number of clusters and generates hmm model for each cluster. In the clustering process, the likelihood calculations of the clusters are performed using iterative hmm learning and testing while varying the number of clusters for given data, and the maximum likelihood estimation method is used to determine the optimal number of clusters. We tested the effectiveness of this clustering algorithm on a small-vocabulary digit clustering task by mapping the unsupervised decoded output of the optimal cluster to the ground-truth transcription, we found out that they were highly correlated.

Nearest neighbor and validity-based clustering

  • Son, Seo H.;Seo, Suk T.;Kwon, Soon H.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.337-340
    • /
    • 2004
  • The clustering problem can be formulated as the problem to find the number of clusters and a partition matrix from a given data set using the iterative or non-iterative algorithms. The author proposes a nearest neighbor and validity-based clustering algorithm where each data point in the data set is linked with the nearest neighbor data point to form initial clusters and then a cluster in the initial clusters is linked with the nearest neighbor cluster to form a new cluster. The linking between clusters is continued until no more linking is possible. An optimal set of clusters is identified by using the conventional cluster validity index. Experimental results on well-known data sets are provided to show the effectiveness of the proposed clustering algorithm.

Semantic Segmentation using Iterative Over-Segmentation and Minimum Entropy Clustering with Automatic Window Size (자동 윈도우 크기 결정 기법을 적용한 Minimum Entropy Clustering과 Iterative Over-Segmentation 기반 Semantic Segmentation)

  • Choi, Hyunguk;Song, Hyeon-Seung;Sohn, Hong-Gyoo;Jeon, Moongu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.826-829
    • /
    • 2014
  • 본 연구에서는 야외 지형 영상 및 항공 영상 등에 대하여 각각의 영역들의 속성을 분할 및 인식 하기 위해 minimum entropy clustering 기반의 군집화 기법과 over-segmentation을 반복 적용하여 군집화 하는 두 방법을 융합한 기법을 제안하였다. 이 기법들을 기반으로 각 군집의 대표 영역을 추출한 후에 학습 데이터를 기반으로 만들어진 텍스톤 사전과 학습 데이터 각각의 텍스톤 모델을 이용하여 텍스톤 히스토그램 매칭을 통해 매칭 포인트를 얻어내고 얻어낸 매칭 포인트를 기반으로 영역의 카테고리를 결정한다. 본 논문에서는 인터넷에서 얻은 일반 야외 영상들로부터 자체적으로 제작한 지형 데이터 셋을 통해 제안한 기법의 우수성을 검증하였으며, 본 실험에서는 영역을 토양, 수풀 그리고 물 지형으로 하여 영상내의 영역을 분류 및 인식하였다.

An Effective Detection of Bimean and its Application into Image Segmentation by an Interative Algorithm Method (반복적인 알고리즘 방법에 의한 효과적인 양평균 검출 및 영상분할에 응용)

  • Heo, Pil-U
    • 연구논문집
    • /
    • s.25
    • /
    • pp.147-154
    • /
    • 1995
  • In this paper, we discussed the convergence and the properties of an iterative algorithm method in order to improve a bimean clustering algorithm. This algorithm that we have discussed choose automatically an optimum threshold as a result of an iterative process, successive iterations providing increasingly cleaner extractions of the object region, The iterative approach of a proposed algorithm is seen to select an appropriate threshold for the low contrast images.

  • PDF

Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data (KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교)

  • Chung, Minkyung;Han, Youkyung;Choi, Jaewan;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1427-1443
    • /
    • 2018
  • Object-based image analysis (OBIA) allows higher computation efficiency and usability of information inherent in the image, as it reduces the complexity of the image while maintaining the image properties. Superpixel methods oversegment the image with a smaller image unit than an ordinary object segment and well preserve the edges of the image. SLIC (Simple linear iterative clustering) is known for outperforming the previous superpixel methods with high image segmentation quality. Although the input parameter for SLIC, number of superpixels has considerable influence on image segmentation results, impact analysis for SLIC parameter has not been investigated enough. In this study, we performed optimal parameter analysis and evaluation of change detection for SLIC-based superpixel techniques using KOMPSAT data. Forsuperpixel generation, three superpixel methods (SLIC; SLIC0, zero parameter version of SLIC; SNIC, simple non-iterative clustering) were used with superpixel sizes in ranges of $5{\times}5$ (pixels) to $50{\times}50$ (pixels). Then, the image segmentation results were analyzed for how well they preserve the edges of the change detection reference data. Based on the optimal parameter analysis, image segmentation boundaries were obtained from difference image of the bi-temporal images. Then, DBSCAN (Density-based spatial clustering of applications with noise) was applied to cluster the superpixels to a certain size of objects for change detection. The changes of features were detected for each superpixel and compared with reference data for evaluation. From the change detection results, it proved that better change detection can be achieved even with bigger superpixel size if the superpixels were generated with high regularity of size and shape.

A K-means-like Algorithm for K-medoids Clustering

  • Lee, Jong-Seok;Park, Hae-Sang;Jun, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.51-54
    • /
    • 2005
  • Clustering analysis is a descriptive task that seeks to identify homogeneous groups of objects based on the values of their attributes. In this paper we propose a new algorithm for K-medoids clustering which runs like the K-means algorithm. The new algorithm calculates distance matrix once and uses it for finding new medoids at every iterative step. We evaluate the proposed method using real and synthetic data and compare with the results of other algorithms. The proposed algorithm takes reduced time in computation and better performance than others.

  • PDF

K-means Clustering using a Center Of Gravity for grid-based sample

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.51-60
    • /
    • 2004
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Cluster Analysis of Incomplete Microarray Data with Fuzzy Clustering

  • Kim, Dae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.397-402
    • /
    • 2007
  • In this paper, we present a method for clustering incomplete Microarray data using alternating optimization in which a prior imputation method is not required. To reduce the influence of imputation in preprocessing, we take an alternative optimization approach to find better estimates during iterative clustering process. This method improves the estimates of missing values by exploiting the cluster Information such as cluster centroids and all available non-missing values in each iteration. The clustering results of the proposed method are more significantly relevant to the biological gene annotations than those of other methods, indicating its effectiveness and potential for clustering incomplete gene expression data.

Clustering by Accelerated Simulated Annealing

  • Yoon, Bok-Sik;Ree, Sang-Bok
    • Korean Management Science Review
    • /
    • v.15 no.2
    • /
    • pp.153-159
    • /
    • 1998
  • Clustering or classification is a very fundamental task that may occur almost everywhere for the purpose of grouping. Optimal clustering is an example of very complicated combinatorial optimization problem and it is hard to develop a generally applicable optimal algorithm. In this paper we propose a general-purpose algorithm for the optimal clustering based on SA(simulated annealing). Among various iterative global optimization techniques imitating natural phenomena that have been proposed and utilized successfully for various combinatorial optimization problem, simulated annealing has its superiority because of its convergence property and simplicity. We first present a version of accelerated simulated annealing(ASA) and then we apply ASA to develop an efficient clustering algorithm. Application examples are also given.

  • PDF

Performance Comparison of Some K-medoids Clustering Algorithms (새로운 K-medoids 군집방법 및 성능 비교)

  • Park, Hae-Sang;Lee, Sang-Ho;Jeon, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.421-426
    • /
    • 2006
  • We propose a new algorithm for K-medoids clustering which runs like the K-means clustering algorithm and test several methods for selecting initial medoids. The proposed algorithm calculates similarity matrix once and uses it for finding new medoids at every iterative step. To evaluate the proposed algorithm we use real and artificial data and compare with the clustering results of other algorithms in terms of three performance measures. Experimental results show that the proposed algorithm takes the reduced time in computation with comparable performance as compared to the Partitioning Around Medoids.

  • PDF