• Title/Summary/Keyword: Iterative Closest Point Matching

Search Result 23, Processing Time 0.027 seconds

A Fast Correspondence Matching for Iterative Closest Point Algorithm (ICP 계산속도 향상을 위한 빠른 Correspondence 매칭 방법)

  • Shin, Gunhee;Choi, Jaehee;Kim, Kwangki
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.373-380
    • /
    • 2022
  • This paper considers a method of fast correspondence matching for iterative closest point (ICP) algorithm. In robotics, the ICP algorithm and its variants have been widely used for pose estimation by finding the translation and rotation that best align two point clouds. In computational perspectives, the main difficulty is to find the correspondence point on the reference point cloud to each observed point. Jump-table-based correspondence matching is one of the methods for reducing computation time. This paper proposes a method that corrects errors in an existing jump-table-based correspondence matching algorithm. The criterion activating the use of jump-table is modified so that the correspondence matching can be applied to the situations, such as point-cloud registration problems with highly curved surfaces, for which the existing correspondence-matching method is non-applicable. For demonstration, both hardware and simulation experiments are performed. In a hardware experiment using Hokuyo-10LX LiDAR sensor, our new algorithm shows 100% correspondence matching accuracy and 88% decrease in computation time. Using the F1TENTH simulator, the proposed algorithm is tested for an autonomous driving scenario with 2D range-bearing point cloud data and also shows 100% correspondence matching accuracy.

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

Novel ICP Matching to Efficiently Interpolate Augmented Positions of Objects in AR (AR에서 객체의 증강 위치를 효율적으로 보간하기 위한 새로운 ICP 매칭)

  • Moon, YeRin;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.563-566
    • /
    • 2022
  • 본 논문에서는 증강현실에서 객체 증강 시, 특징점과 GPS를 이용하여 증강 위치를 효율적으로 보간할 수 있는 ICP(Iterative closest point) 매칭 기법을 제안한다. 다양한 환경에서 제한받지 않고 객체를 증강하기 위해 일반적으로 마커리스(Markerless) 방식을 사용하며, 대표적으로 평면 검출과 페이스 검출을 사용한다. 이는 현실과 자연스러운 동기화를 위한 것으로 계산은 작지만, 인식의 범위가 넓기 때문에 증강 위치에 대한 오차가 존재한다. 이러한 작은 오차는 특정 산업에서는 치명적일 수 있으며, 특히 건설이나 의료시설에서 발생하면 큰 사고로 이어진다. 객체를 증강 시킬 때 해당 환경에 대한 점 구름(Point cloud)을 수집하여 데이터베이스에 저장한다. 본 논문에서는 관측되는 점 구름과의 오차를 줄이기 위해 ICP 매칭 기법을 사용하며, 실린더 기반의 각도 보간을 이용하여 계산량을 줄인다. 결과적으로 특징점과 GPS를 이용하여 ICP 매칭 기법을 통해 효율적으로 처리함으로써, 증강 위치에 대한 정확도가 개선된 증강 방식을 보여준다.

  • PDF

Markerless Image-to-Patient Registration Using Stereo Vision : Comparison of Registration Accuracy by Feature Selection Method and Location of Stereo Bision System (스테레오 비전을 이용한 마커리스 정합 : 특징점 추출 방법과 스테레오 비전의 위치에 따른 정합 정확도 평가)

  • Joo, Subin;Mun, Joung-Hwan;Shin, Ki-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.118-125
    • /
    • 2016
  • This study evaluates the performance of image to patient registration algorithm by using stereo vision and CT image for facial region surgical navigation. For the process of image to patient registration, feature extraction and 3D coordinate calculation are conducted, and then 3D CT image to 3D coordinate registration is conducted. Of the five combinations that can be generated by using three facial feature extraction methods and three registration methods on stereo vision image, this study evaluates the one with the highest registration accuracy. In addition, image to patient registration accuracy was compared by changing the facial rotation angle. As a result of the experiment, it turned out that when the facial rotation angle is within 20 degrees, registration using Active Appearance Model and Pseudo Inverse Matching has the highest accuracy, and when the facial rotation angle is over 20 degrees, registration using Speeded Up Robust Features and Iterative Closest Point has the highest accuracy. These results indicate that, Active Appearance Model and Pseudo Inverse Matching methods should be used in order to reduce registration error when the facial rotation angle is within 20 degrees, and Speeded Up Robust Features and Iterative Closest Point methods should be used when the facial rotation angle is over 20 degrees.

Accuracy Evaluation by Point Cloud Data Registration Method (점군데이터 정합 방법에 따른 정확도 평가)

  • Park, Joon Kyu;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • 3D laser scanners are an effective way to quickly acquire a large amount of data about an object. Recently, it is used in various fields such as surveying, displacement measurement, 3D data generation of objects, construction of indoor spatial information, and BIM(Building Information Model). In order to utilize the point cloud data acquired through the 3D laser scanner, it is necessary to make the data acquired from many stations through a matching process into one data with a unified coordinate system. However, analytical researches on the accuracy of point cloud data according to the registration method are insufficient. In this study, we tried to analyze the accuracy of registration method of point cloud data acquired through 3D laser scanner. The point cloud data of the study area was acquired by 3D laser scanner, the point cloud data was registered by the ICP(Iterative Closest Point) method and the shape registration method through the data processing, and the accuracy was analyzed by comparing with the total station survey results. As a result of the accuracy evaluation, the ICP and the shape registration method showed 0.002m~0.005m and 0.002m~0.009m difference with the total station performance, respectively, and each registration method showed a deviation of less than 0.01m. Each registration method showed less than 0.01m of variation in the experimental results, which satisfies the 1: 1,000 digital accuracy and it is suggested that the registration of point cloud data using ICP and shape matching can be utilized for constructing spatial information. In the future, matching of point cloud data by shape registration method will contribute to productivity improvement by reducing target installation in the process of building spatial information using 3D laser scanner.

Road network data matching using the network division technique (네트워크 분할 기법을 이용한 도로 네트워크 데이터 정합)

  • Huh, Yong;Son, Whamin;Lee, Jeabin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.285-292
    • /
    • 2013
  • This study proposes a network matching method based on a network division technique. The proposed method generates polygons surrounded by links of the original network dataset, and detects corresponding polygon group pairs using a intersection-based graph clustering. Then corresponding sub-network pairs are obtained from the polygon group pairs. To perform the geometric correction between them, the Iterative Closest Points algorithm is applied to the nodes of each corresponding sub-networks pair. Finally, Hausdorff distance analysis is applied to find link pairs of networks. To assess the feasibility of the algorithm, we apply it to the networks from the KTDB center and commercial CNS company. In the experiments, several Hausdorff distance thresholds from 3m to 18m with 3m intervals are tested and, finally, we can get the F-measure of 0.99 when using the threshold of 15m.

Direction Augmented Probabilistic Scan Matching for Reliable Localization (신뢰성 높은 위치 인식을 위하여 방향을 고려한 확률적 스캔 매칭 기법)

  • Choi, Min-Yong;Choi, Jin-Woo;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1234-1239
    • /
    • 2011
  • The scan matching is widely used in localization and mapping of mobile robots. This paper presents a probabilistic scan matching method. To improve the performance of the scan matching, a direction of data point is incorporated into the scan matching. The direction of data point is calculated using the line fitted by the neighborhood data. Owing to the incorporation, the performance of the matching was improved. The number of iterations in the scan matching decreased, and the tolerance against a high rotation between scans increased. Based on real data of a laser range finder, experiments verified the performance of the proposed direction augmented probabilistic scan matching algorithm.

6D ICP Based on Adaptive Sampling of Color Distribution (색상분포에 기반한 적응형 샘플링 및 6차원 ICP)

  • Kim, Eung-Su;Choi, Sung-In;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.401-410
    • /
    • 2016
  • 3D registration is a computer vision technique of aligning multi-view range images with respect to a reference coordinate system. Various 3D registration algorithms have been introduced in the past few decades. Iterative Closest Point (ICP) is one of the widely used 3D registration algorithms, where various modifications are available nowadays. In the ICP-based algorithms, the closest points are considered as the corresponding points. However, this assumption fails to find matching points accurately when the initial pose between point clouds is not sufficiently close. In this paper, we propose a new method to solve this problem using the 6D distance (3D color space and 3D Euclidean distances). Moreover, a color segmentation-based adaptive sampling technique is used to reduce the computational time and improve the registration accuracy. Several experiments are performed to evaluate the proposed method. Experimental results show that the proposed method yields better performance compared to the conventional methods.

Lane Map-based Vehicle Localization for Robust Lateral Control of an Automated Vehicle (자율주행 차량의 강건한 횡 방향 제어를 위한 차선 지도 기반 차량 위치추정)

  • Kim, Dongwook;Jung, Taeyoung;Yi, Kyong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Automated driving systems require a high level of performance regarding environmental perception, especially in urban environments. Today's on-board sensors such as radars or cameras do not reach a satisfying level of development from the point of view of robustness and availability. Thus, map data is often used as an additional data input to support these systems. An accurate digital map is used as a powerful additional sensor. In this paper, we propose a new approach for vehicle localization using a lane map and a single-layer LiDAR. The maps are created beforehand using a highly accurate DGPS and a single-layer LiDAR. A pose estimation of the vehicle was derived from an iterative closest point (ICP) match of LiDAR's intensity data to the lane map, and the estimated pose was used as an observation inside a Kalmanfilter framework. The achieved accuracy of the proposed localization algorithm is evaluated with a highly accurate DGPS to investigate the performance with respect to lateral vehicle control.

2D Grid Map Compensation Using ICP Algorithm based on Feature Points (특징 점 기반의 ICP 알고리즘을 이용한 2차원 격자지도 보정)

  • Hwang, Yu-Seop;Lee, Dong-Ju;Yu, Ho-Yun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.965-971
    • /
    • 2015
  • This paper suggests a feature point-based Iterative Closest Point (ICP) algorithm to compensate for the disparity error in building a two-dimensional map. The ICP algorithm is a typical algorithm for matching a common object in two different images. In the process of building a two-dimensional map using the laser scanner data, warping and distortions exist in the map because of the disparity between the two sensor values. The ICP algorithm has been utilized to reduce the disparity error in matching the scanned line data. For this matching process in the conventional ICP algorithm, pre-known reference data are required. Since the proposed algorithm extracts characteristic points from laser-scanned data, reference data are not required for the matching. The laser scanner starts from the right side of the mobile robot and ends at the left side, which causes disparity in the scanned line data. By finding the matching points between two consecutive frame images, the motion vector of the mobile robot can be obtained. Therefore, the disparity error can be minimized by compensating for the motion vector caused by the mobile robot motion. The validity of the proposed algorithm has been verified by comparing the proposed algorithm in terms of map-building accuracy to conventional ICP algorithm real experiments.