Since hand gesture recognition was realized thanks to improved image processing algorithms, sign language translation has been a critical issue for the hearing-impaired. In this paper, we extract human hand figures from a real time image stream and detect gestures in order to figure out which kind of hand language it means. We used depth-color calibrated image from the Kinect to extract human hands and made a decision tree in order to recognize the hand gesture. The decision tree contains information such as number of fingers, contours, and the hand's position inside a uniform sized image. We succeeded in recognizing 'Hangul', the Korean alphabet, with a recognizing rate of 98.16%. The average execution time per letter of the system was about 76.5msec, a reasonable speed considering hand language translation is based on almost still images. We expect that this research will help communication between the hearing-impaired and other people who don't know hand language.
Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.
The Transactions of the Korea Information Processing Society
/
v.6
no.9
/
pp.2332-2342
/
1999
Multicast is an important system-level one-to-many collective communication service. A key issue in designing software multicast algorithms is to consider the trade-off between performance and portability. Based on the LogP model, the proposed parameterized communication model can more accurately characterize the communication network of parallel platforms, Under the parameterized model, we propose an efficient architecture-independent method. OPT-tree algorithm, to construct optimal multicast trees and also investigate architecture-dependent tuning on performance of the multicast algorithm to achieve the truly optimal performance when implemented in real networks. Specifically, OPT-mesh which is the optimized version of the parameterized multicast algorithm for wormhole-switched mesh networks is developed and compared with two other well-known network-dependent algorithms.
Korean Journal of Construction Engineering and Management
/
v.22
no.6
/
pp.76-86
/
2021
Construction projects have high potentials of claims and disputes due to inherent risks where a variety of stakeholders are involved. Since disputes could cause losses in terms of cost and time, it is a critical issue for contractors to forecast and pro-actively manage disputes in advance in order to secure project efficiency and higher profits. The objective of the study is to develop a decision tree-based predictive analytics model for forecasting dispute types and their probabilities according to construction project conditions. It can be a useful tool to forecast potential disputes and thus provide opportunities for proactive management.
Probabilistic safety assessment (PSA) plays a critical role in ensuring the safe operation of nuclear power plants. In PSA, event trees are developed to identify accident sequences that could lead to core damage. These event trees are then transformed into a core-damage fault tree, wherein the accident sequences are represented by usual and complemented logic gates representing failed and successful operations of safety systems, respectively. The core damage frequency (CDF) is estimated by calculating the minimal cut sets (MCSs) of the core-damage fault tree. Delete-term approximation (DTA) is commonly employed to approximately solve MCSs representing accident sequence logics from noncoherent core-damage fault trees. However, DTA can lead to an overestimation of CDF, particularly when fault trees contain many nonrare events. To address this issue, the present study introduces a new zero-suppressed ternary decision diagram (ZTDD) algorithm that averts the CDF overestimation caused by DTA. This ZTDD algorithm can optionally calculate MCSs with DTA or prime implicants (PIs) without any approximation from the core-damage fault tree. By calculating PIs, accurate CDF can be calculated. The present study provides a comprehensive explanation of the ZTDD structure, formula of the ZTDD algorithm, ZTDD minimization, probability calculation from ZTDD, strength of the ZTDD algorithm, and ZTDD application results. Results reveal that the ZTDD algorithm is a powerful tool that can quickly and accurately calculate CDF and drastically improve the safety of nuclear power plants.
The Journal of Korean Institute of Communications and Information Sciences
/
v.36
no.4A
/
pp.388-398
/
2011
In this paper, we introduce an EMSP(Efficient Mobility Support Protocol) for mobile sensor network with mobility-aware. We propose virtual cluster and node split scheme considering movements of mobile nodes. The existing M-LEACH protocol suffers from communication cost spent on JOIN request information during invitation phase. To address this issue, the large boundary of the cluster in LUR-tree can reduce superfluous update cost. In addition to the expansion of the cluster, the proposed approach exploits node split algorithms used in R-tree in order to uniformly form a cluster. The simulated results show that energy-consumption has less up to about 40% than LEACH-C and 8% than M-LEACH protocol. Finally, we show that the proposed scheme outperforms those of other in terms of lifetime of sensor fields and scalability in wireless sensor network.
As random access memory chip gets cheaper, it becomes affordable to realize main memory-based database systems. Consequently, reducing cache misses emerges as the most important issue in current main memory databases, in which CPU speeds have been increasing at 60% per year, compared to the memory speeds at 10% per you. In this paper, we design and implement a main-memory database system for real-time mobile GIS. Our system is composed of 5 modules: the interface manager provides the interface for PDA users; the memory data manager controls spatial and non-spatial data in main-memory using virtual memory techniques; the query manager processes spatial and non-spatial query : the index manager manages the MR-tree index for spatial data and the T-tree index for non-spatial index : the GIS server interface provides the interface with disk-based GIS. The MR-tree proposed propagates node splits upward only if one of the internal nodes on the insertion path has empty space. Thus, the internal nodes of the MR-tree are almost 100% full. Our experimental study shows that the two-dimensional MR-tree performs search up to 2.4 times faster than the ordinary R-tree. To use virtual memory techniques, the memory data manager uses page tables for spatial data, non- spatial data, T-tree and MR-tree. And, it uses indirect addressing techniques for fast reloading from disk.
In this paper, we propose a novel algorithm for predicting the number of apples on an apple tree using a deep learning-based object detection model and a polynomial regression model. Measuring the number of apples on an apple tree can be used to predict apple yield and to assess losses for determining agricultural disaster insurance payouts. To measure apple fruit load, we photographed the front and back sides of apple trees. We manually labeled the apples in the captured images to construct a dataset, which was then used to train a one-stage object detection CNN model. However, when apples on an apple tree are obscured by leaves, branches, or other parts of the tree, they may not be captured in images. Consequently, it becomes difficult for image recognition-based deep learning models to detect or infer the presence of these apples. To address this issue, we propose a two-stage inference process. In the first stage, we utilize an image-based deep learning model to count the number of apples in photos taken from both sides of the apple tree. In the second stage, we conduct a polynomial regression analysis, using the total apple count from the deep learning model as the independent variable, and the actual number of apples manually counted during an on-site visit to the orchard as the dependent variable. The performance evaluation of the two-stage inference system proposed in this paper showed an average accuracy of 90.98% in counting the number of apples on each apple tree. Therefore, the proposed method can significantly reduce the time and cost associated with manually counting apples. Furthermore, this approach has the potential to be widely adopted as a new foundational technology for fruit load estimation in related fields using deep learning.
Journal of Agricultural Extension & Community Development
/
v.25
no.1
/
pp.15-30
/
2018
This study attempted to classify the residents of rural area into some groups according to the level of their community satisfaction by decision tree model. The variable that has the greatest influence on grouping rural residents according to community satisfaction is income. However, it appears that the variable of participating in the community activities can weaken their influences. The second most satisfying group is the group of people who are lower-income and active in community activities. On the other hand, the group of people who are high-income and inactive in community activities are included to unsatisfying groups. These findings suggest that community participation can be a major factor in enhancing the quality of life of residents in the rural communities. What is noteworthy is that marital status is used as a major variable to classify the rural residents into some groups according to the level of community satisfaction. This suggests that the issue of marriage is still a major problem in rural communities.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.6
/
pp.2922-2945
/
2018
Achieving efficient authentication is a crucial issue for stream data commonly seen in content delivery, peer-to-peer, and multicast/broadcast networks. Stream authentication mechanisms need to be operated efficiently at both sender-side and receiver-side at the same time because of the properties of stream data such as real-time and delay-sensitivity. Until now, many stream authentication mechanisms have been proposed, but they are not efficient enough to be used in stream applications where the efficiency for sender and receiver sides are required simultaneously since most of them could achieve one of either sender-side and receiver-side efficiency. In this paper, we propose an efficient stream authentication mechanism, so called TIM, by integrating Trapdoor Hash Function and Merkle Hash Tree. Our construction can support efficient streaming data processing at both sender-side and receiver-side at the same time differently from previously proposed other schemes. Through theoretical and experimental analysis, we show that TIM can provide enhanced performance at both sender and receiver sides compared with existing mechanisms. Furthermore, TIM provides an important feature for streaming authentication, the resilience against transmission loss, since each data block can be verified with authentication information contained in itself.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.