• 제목/요약/키워드: Isotropic-Kinematic Hardening

검색결과 46건 처리시간 0.027초

Combined Isotropic-Kinematic 경화규칙에 기초한 자동차용 알루미늄합금-및 Dual-Phase 강 판재의 스프링백 예측 (Spring-back Evaluation of Automotive Sheets Based on Combined Isotropic-Kinematic Hardening Rule)

  • 이명규;김대용;정관수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.144-147
    • /
    • 2003
  • In order to evaluate spring-back behavior in automotive sheet forming processes, a panel shape idealized as a SS-rail has been investigated. After spring-back kas been predicted fer SS-rails using the finite element analysis, results has been compared with experimental measurements for three automotive sheets. To account for hardening behavior such as the Bauschinger and transient effects in addition to anisotropic behavior, the combined isotropic-kinematic hardening law based on the Chaboche type single-surface model and a recently developed non-quadratic anisotropic yield function have been utilized, respectively.

  • PDF

Springback FE modeling of titanium alloy tubes bending using various hardening models

  • Shahabi, Mehdi;Nayebi, Ali
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.369-383
    • /
    • 2015
  • In this study, effect of various material hardening models based on Holloman's isotropic, Ziegler's linear kinematic, non-linear kinematic and mixture of the isotropic and nonlinear kinematic hardening laws on springback prediction of titanium alloy (Ti-3Al-2.5V) in a tube rotary draw bending (RDB) process was investigated with presenting the keynotes for a comprehensive step by step ABAQUS simulation. Influence of mandrel on quality of the final product including springback, wall-thinning and cross-section deformation of the tube was investigated, too. Material parameters of the hardening models were obtained based on information of a uniaxial test. In particular, in the case of combined iso-nonlinear kinematic hardening the material constants were calibrated by a simple approach based on half-cycle data instead of several stabilized cycles ones. Moreover, effect of some material and geometrical parameters on springback was carried out. The results showed that using the various hardening laws separately cannot describe the material hardening behavior correctly. Therefore, it is concluded that combining the hardening laws is a good idea to have accurate springback prediction. Totally the results are useful for predicting and controlling springback and cross-section deformation in metal forming processes.

직교이방 섬유강화 복합재료의 비선형 비등방 경화법칙 (Nonlinear Anisotropic Hardening Laws for Orthotropic Fiber-Reinforced Composites)

  • 김대용;이명규;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.75-78
    • /
    • 2003
  • In order to describe the Bauschinger and transient behavior of orthotropic fiber-reinforced composites, a combined isotropic-kinematic hardening law based on the non-linear kinematic hardening rule was considered here, in particular, based on the Chaboche type law. In this modified constitutive law, the anisotropic evolution of the back-stress was properly accounted for. Also, to represent the orthotropy of composite materials, Hill's 1948 quadratic yield function and the orthotropic elasticity constitutive equations were utilized. Furthermore, the numerical formulation to update the stresses was also developed based on the incremental deformation theory for the boundary value problems. Numerical examples confirmed that the new law based on the anisotropic evolution of the back-stress complies well with the constitutive behavior of highly anisotropic materials such as fiber-reinforced composites.

  • PDF

혼합 등방-이동 경화규칙에 기초한 자동차용 알루미늄합금 및 Dual-Phase 강 판재의 스프링백 예측 (Spring-back Evaluation of Automotive Sheets Based on Combined Isotropic-Kinematic Hardening Rule)

  • 이명규;김대용;정관수
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.15-20
    • /
    • 2004
  • 본 연구에서는 자동차용 판재 성형시 발생하는 스프링백을 정확히 예측하기 위하여, 수정된Chaboche형에 기초한 혼합형 등방-이동경화규칙이 개발되었다. 또한 판재의 이방성을 위하여 최근 개발된 Barlat의 YId2000-24 비이차 비이방성 항복 함수가 이용되었다. 단순인장실험과 인장/압축(압축/인장) 실험에 의하여 Bauschinger 및 transient 거동과 비이방성이 측정되었으며, 유한요소해석에 의한 구성방정식의 검증을 위해 실제 자동차 부품을 부분 변형시킨 double S-rail이 제작되었다. 수정된 Chaboche 형 조성방정식과 비등방 항복함수를 적용한 유한요소에 의한 수치해석의 결과는 굽힘에 의한 스프링백과 비틀림에 있어서 실험과 잘 일치함을 알 수 있었다.

표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법 (Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data)

  • 황진하;김훈태;류호완;김윤재;김진원;권형도
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.

Hardening of Steel Sheets with Orthotropy Axes Rotations and Kinematic Hardening

  • Hahm, Ju-Hee;Kim, Kwon-Hee;Yin, Jung-Je
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.91-97
    • /
    • 2000
  • Anisotropic work hardening of cold rolled low carbon steel sheets is studied. The experiments consist of two stage tensile prestraining and tensile tests. At the first prestraining, steel sheets are streteched along the rolling direction by 3% and 6% tensile strains. The second prestrains are at 0${\cric}$, 30${\cric}$, 60${\cric}$to the rolling directions by varying degrees. Tensile tests are performed on the specimens cut from the sheets after the two stage prestraining. A theoretical framework on anisotropic hardening is proposed which includes Hill's quadratic yield function, ziegler's kinematic hardening rule, and Kim and Yin's assumption on the rotation of orthotropy axes. The predicted variations of R-values with second stage tensile strain are compared with the experimental data.

  • PDF

Local ratcheting behavior in notched 1045 steel plates

  • Kolasangiani, K.;Farhangdoost, K.;Shariati, M.;Varvani-Farahani, A.
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.1-11
    • /
    • 2018
  • In this paper, local ratcheting behavior of 1045 steel plates with circular cutout was investigated. Experimental tests were carried out by a Zwick/Roell HB 100 servo hydraulic machine. In order to measure the local strain at notch root, a data acquisition system with strain gauge was used. Various notch diameters and distances of strain gauges mounted from the notch root were found influential in the magnitude of local ratcheting strain. It was found that the local maximum principal stress plays a crucial role in increasing the local plastic deformation. Numerical simulation was done by ABAQUS software using nonlinear isotropic/kinematic hardening model. Material parameters of hardening model were attained from several stabilized cycles of flat specimens subjected to symmetric strain cycles. The nonlinear kinematic hardening model along with the Neuber's rule was employed to assess local ratcheting at the notch root of steel plates. The results of the numerical simulations agreed closely with those measured values in this study. Both ratcheting progress and mean stress relaxation occurred simultaneously at the notch root.

영구 연화 거동을 고려한 마찰교반용접(FSW) 된 DP강 판재의 탄성 복원 예측 (Springback prediction of friction stir welded DP590 steel sheets considering permanent softening behavior)

  • 박태준;이원오;정경환;김준형;김대용;;;;정관수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.304-307
    • /
    • 2008
  • In order to evaluate the effect of permanent softening behavior on springback prediction, 2D-draw bending simulations were compared with experiments for friction stir welded DP590 steel sheets. To account fur the nonlinear hardening behavior, the combined isotropic-kinematic hardening law was utilized with and without considering the permanent softening behavior during reverse loading. Also, the non-quadratic orthotropic yield function, Yld2000-2d, was used to describe the anisotropic initial-yielding behavior of the base sheet while anisotropic properties of the weld zone were ignored for simplicity.

  • PDF

하이브리드 박막/굽힘 방법을 이용한 드로비드력의 예측 (Prediction of Drawbead Restraining Force by Hybrid Membrane/Bending Method)

  • 이명규;정관수;;금영탁
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.533-538
    • /
    • 2006
  • A simplified numerical procedure to predict drawbead restraining forces(DBRF) has been developed based on the hybrid membrane/bending method which superposes bending effects onto membrane solutions. As a semi-analytical method, the new approach is especially useful to analyze the effects of various constitutive parameters. The present model can accommodate general anisotropic yield functions along with non-linear isotropic-kinematic hardening under the plane strain condition. For the preliminary results, several sensitivity analyses for the process and material effects such as friction, drawbead depth, hardening behavior including the Bauschinger effect and yield surface shapes on the DBRF are carried out.

시간 의존성 구성방정식을 이용한 AA6022-T4 판재의 탄성 복원 예측 (Time-Dependent Spring-back Prediction of Aluminum Alloy 6022-T4 Sheets Using Time-Dependent Constitutive law)

  • 박래준;류한선;이명규;정경환;;정관수
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.494-499
    • /
    • 2009
  • The time-dependent constitutive law was utilized based on viscoelastic-plasticity to predict the time-dependent spring-back behavior of aluminum alloy 6022-T4 sheets. Besides nonlinear viscoelasticity, non-quadratic anisotropic yield function, Yld2000-2d, was used to account for the anisotropic yield behavior, while the combined isotropic-kinematic hardening law was used to represent the Bauschinger effect and transient hardening. For verification purposes, finite element simulations were performed for the draw-bending and the results were compared with experimental results.