• Title/Summary/Keyword: Isotropic response

Search Result 142, Processing Time 0.029 seconds

Bending analysis of FGM plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.543-558
    • /
    • 2016
  • The response of functionally graded ceramic-metal plates is investigated using theoretical formulation, Navier's solutions, and a new displacement based on the high-order shear deformation theory are presented for static analysis of functionally graded plates. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results of the new refined plate theory are presented to show the effect of the material distribution on the deflections, stresses and fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the static and free vibration behavior of functionally graded plates.

Modal Analysis on SPL of the Periodic Structure depend on Unsymmetrical Beam Space (비대칭형 보강재 간격에 따른 주기구조물의 SPL모드 해석)

  • 김택현;김종태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 2002
  • The purpose of this research is to study the vibration and acoustic pressure radiation from a thin isotropic flat plate stiffened by a rectangular array of beams, and excited by a time harmonic point force. These constructions on aircraft and ship structures are often subjected to fiequency dependent pressure fluctuations and forces. Forces from the these excitations induce structural vibrations in a wide range of fiequencies, which may cause such things as acoustic fatigue and internal cabin noise in the aircraft. It is thus important that the response characteristics and vibration modes of such periodic structures be horn. From this theoretical model, the sound pressure levels(SPL) in a semi-infinite fluid(water) bounded by the plate with the variation in the locations of an external time harmonic point farce on the plate can be calculated efficiently using three numerical tools such as the Gauss-jordan method the LU decomposition method md the IMSL numerical package.

Vibration Analysis of Hard Disk Drive System (하드 디스크 드라이브 계의 진동해석)

  • Im, Seung-Cheol;Gwak, Byeong-Mun;Jeon, Sang-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1183-1192
    • /
    • 2000
  • This paper relates to the flexural vibration analysis of the hard disk drive (HDD) spindle systems by means of the finite element method. In contrast to previous researches, every system componebt is here analytically modeled taking into account its flexibility and also the centrifugal effect particularly for the disk. To prove the effectiveness and accuracy of the proposed method, commercial HDD spindle systems with two and three identical disks are chosen as examples. Then, their major flexural natural modes are computed employing only a small number of element meshes as the shaft rotaional speed is varied, and compared with the bumerical or experimental results.

Study on thermal and UV stability of Liquid Crystal Display for Projection TV Application (프로젝션 TV 적용을 위한 액정 디스플레이의 열적 및 UV 안전성에 관한 연구)

  • Choi, Sung-Ho;Hwang, Jeoung-Yeon;Bae, Yu-Han;Lee, Whee-Won;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.287-288
    • /
    • 2005
  • In this study, we have investigated electro-optical characteristics of thermal and UV stressed TN cells on the rubbed polyimide surface. Mono-domain alignments of thermal stressed TN cells over temperature of liquid crystal isotropic phase were almost same that of no thermal stressed TN cells. Also, threshold voltage and response time of thermal stressed TN cells were same that of no thermal stressed TN cells. Finally, the residual DC voltage of the thermal stressed TN cell on the polyimide surface show decrease of characteristics as increasing thermal stress time. Therefore, thermal stability of TN cell was decreased by high thermal stress for the long times.

  • PDF

Study for Thermal Stability of Liquid Crystal Device (액정 소자의 열적 안전성에 관한 연구)

  • 이상극;황정연;서대식;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.439-442
    • /
    • 2004
  • In this study, we investigated about electrooptics characteristic of three kinds of TN cell on the polyimide surface. Monodomain alignments of thermal stressed TN cell over temperature of liquid crystal isotropic phase were almost the same as that of no thermal stressed TN cells. However, the thermal stressed TN cells have many defects. Also, threshold voltage and response time of thermal stressed TN cells show the same performances as no thermal stressed TN cells. There were little changes of value in these TN cells. However, transmittances of TN cells on the polyimide surface decrease with increasing thermal stress time. Finally, the residual DC voltage of the thermal stressed TN cell on the polyimide surface shows decrease of characteristics as increasing thermal stress time. Therefore, the thermal stability of TN cell was decreased by high thermal stress for the long times.

Predicting Mechanical Response of Multilayered Aluminum Sheet Using Finite Element Analysis (유한요소해석 연계 알루미늄 다층판재의 기계적 거동 예측)

  • Sung, J.Y.;Kim, M.H.;Bong, H.J.;Lee, K.S.;Kim, M.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.347-355
    • /
    • 2020
  • The mechanical responses of multilayered aluminum sheet fabricated by roll bonding, i.e., A1050/A3004 (65% A1050, 35% A3004 by thickness), were investigated via combined experiment and finite element (FE) analysis. The mechanical properties were measured using uniaxial tensile tests in various loading directions for the multilayered sheet. The corresponding tests for individual layers were also conducted. The testing samples were prepared by wire electro discharge machining (EDM). Stress-strain curves and Lankford coefficients of the multilayered sheet were then predicted by FE simulations. The measured mechanical properties of the individual layers were utilized as inputs for the simulation. Two yield functions, i.e., isotropic von-Mises and anisotropic non-quadratic Hill1948, were employed. Predicted results were compared with the experimental data and further discussed.

Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.681-697
    • /
    • 2016
  • The model of two-temperature magneto-thermoelasticity for a non-simple variable-thermal-conductivity infinitely-long solid cylinder is established. The present cylinder is made of an isotropic homogeneous thermoelastic material and its bounding plane is traction-free and subjected to a time-dependent temperature. An exact solution is firstly obtained in Laplace transform space to obtain the displacement, incremental temperature, and thermal stresses. The inversion of Laplace transforms has been carried out numerically since the response is of more interest in the transient state. A detailed analysis of the effects of phase-lags, an angular frequency of thermal vibration and the variability of thermal conductivity parameter on the field quantities is presented.

Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code

  • Demir, Nilgun;Kuluozturk, Zehra Nur
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3759-3763
    • /
    • 2021
  • In this study, 3" × 3" NaI(Tl) detector, which is widely used in gamma spectroscopy, was modeled with FLUKA code, and calculations required to determine the detector's energy resolution were reported. Photon beams with isotropic distribution with 59, 81, 302, 356, 511, 662, 835, 1173, 1275, and 1332 keV energy were used as radiation sources. The photon pulse height distribution of the NaI(Tl) without influence of its energy resolution obtained with FLUKA code has been converted into a real NaI(Tl) response function, using the necessary conversion process. The photon pulse height distribution simulated in the conversion process was analyzed using the ROOT data analysis framework. The statistical errors of the simulated data were found in the range of 0.2-1.1%. When the results, obtained with FLUKA and ROOT, are compared with the literature data, it is seen that the results are in good agreement with them. Thus, the applicability of this procedure has been demonstrated for the other energy values mentioned.

Static and harmonic analysis of moderately thick square sandwich plate using FEM

  • Manoj Nawariya;Avadesh K. Sharma;Pankaj Sonia;Vijay Verma
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.83-100
    • /
    • 2023
  • In this paper, sandwich plate, constructed with orthotropic and isotropic composite materials, is analyzed to obtain the static and harmonic behavior. The analysis is done by using ANSYS APDL FEM tool. A solid-shell 190 and an 8-node solid 185 elements are employed for face and core material respectively to analyze the plate. Results was attained by using Reissner-Mindlin theory. Effect of increasing thickness ratio of face sheet to depth of the plate is presented on static, vibration and harmonic response on the sheet and the results are discussed briefly. Published work in open domain was used to validate the results and observed excellent agreement. It can be stated that proposed model presents results with remarkable accuracy. Results are obtained to reduce the weight of the plate and minimizing the vibration amplitudes.

Response Variability of Laminated Composite Plates with Random Elastic Modulus (탄성계수의 불확실성에 의한 복합적층판 구조의 응답변화도)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.335-345
    • /
    • 2008
  • In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates, which have been applied to variety of mechanical structures due to their high strength to weight ratios. The applied concept in the formulation is the weighted integral method, which has been shown to give the most accurate results among others. We take into account the elastic modulus and in-plane shear modulus as random. For individual random parameters, independent stochastic field functions are assumed, and the effect of these random parameters on the response are estimated based on the exponentially varying auto- and cross-correlation functions. Based on example analyses, we suggest that composite plates show a less coefficient of variation than plates of isotropic and orthotropic materials. For the validation of the proposed scheme, Monte Carlo analysis is also performed, and the results are compared with each other.