• 제목/요약/키워드: Isotopic Content

검색결과 45건 처리시간 0.03초

DESIGN OF LSDS FOR ISOTOPIC FISSILE ASSAY IN SPENT FUEL

  • Lee, Yongdeok;Park, Chang Je;Kim, Ho-Dong;Song, Kee Chan
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.921-928
    • /
    • 2013
  • A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI), the system involves a Sodium Fast Reactor (SFR) linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS). The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded.

Isotopic Fissile Assay of Spent Fuel in a Lead Slowing-Down Spectrometer System

  • Lee, Yongdeok;Jeon, Juyoung;Park, Changje
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.549-555
    • /
    • 2017
  • A lead slowing-down spectrometer (LSDS) system is under development to analyze isotopic fissile content that is applicable to spent fuel and recycled material. The source neutron mechanism for efficient and effective generation was also determined. The source neutron interacts with a lead medium and produces continuous neutron energy, and this energy generates dominant fission at each fissile, below the unresolved resonance region. From the relationship between the induced fissile fission and the fast fission neutron detection, a mathematical assay model for an isotopic fissile material was set up. The assay model can be expanded for all fissile materials. The correction factor for self-shielding was defined in the fuel assay area. The corrected fission signature provides well-defined fission properties with an increase in the fissile content. The assay procedure was also established. The assay energy range is very important to take into account the prominent fission structure of each fissile material. Fission detection occurred according to the change of the Pu239 weight percent (wt%), but the content of U235 and Pu241 was fixed at 1 wt%. The assay result was obtained with 2~3% uncertainty for Pu239, depending on the amount of Pu239 in the fuel. The results show that LSDS is a very powerful technique to assay the isotopic fissile content in spent fuel and recycled materials for the reuse of fissile materials. Additionally, a LSDS is applicable during the optimum design of spent fuel storage facilities and their management. The isotopic fissile content assay will increase the transparency and credibility of spent fuel storage.

고분해능 Ge(Li) 검출기를 이용한 Uranium 시료내의 $U^{235}$ /$U^{238}$ 함유량의 신속측정 (A RAPID DETERMINATION OF $U^{235}$ CONTENTS OF URANIUM SAMPLES UTILIZING HIGH RESOLUTION Ge(Li) DETECTOR)

  • 정문규;조성원;서두환
    • Nuclear Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.33-38
    • /
    • 1969
  • Determinations of the isotopic contents of U$^{235}$ and U$^{238}$ in ten uranium samples containing 0.72-89.70 at % U$^{235}$ were carried out in two ways utilizing high resolution Ge (Li) gamma-ray spectrometer. One method is based upon the fact that the intensity of 185.5 kev gamma-ray vary linearly with U$^{235}$ content for a given geometry. Another method applied for the direct determination of the U$^{235}$ / U$^{238}$ isotopic ratios is the precision gamma-ray spectrometric analysis of reactor irradiated uranium samples after allowing a fixed cooling time for one hour. The results obtained by both methods well agree with the values calculated from the isotopic contents of highly enriched original uranium samples measured by mass spectrometer. The precision obtained was well below 5% for most of the isotopic ratios investigated.

  • PDF

ANALYSIS OF HIGH BURNUP PRESSURIZED WATER REACTOR FUEL USING URANIUM, PLUTONIUM, NEODYMIUM, AND CESIUM ISOTOPE CORRELATIONS WITH BURNUP

  • KIM, JUNG SUK;JEON, YOUNG SHIN;PARK, SOON DAL;HA, YEONG-KEONG;SONG, KYUSEOK
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.924-933
    • /
    • 2015
  • The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional $^{235}U$ burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using $^{233}U$, $^{242}Pu$, $^{150}Nd$, and $^{133}Cs$ as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code.

울산철광산 지역의 사문암의 사문석화 작용에 관한 연구 (A Study on Serpentinization of Serpentinites from the Ulsan Iron Mine)

  • 김규한;박재경;양종만;사타케 히로시
    • 자원환경지질
    • /
    • 제26권3호
    • /
    • pp.267-278
    • /
    • 1993
  • Serpentinite rocks which are composed mainly of olivine, serpentine and clinopyroxene, cropped out in the anorogenic Kyongsang sedimentary basin of South Korea. The serpentinites contain high content of MgO (36.87~41.99%) and 47~67 ppm Co, 1185~2042 ppm Ni and 979~3582 ppm Cr, which are quite similar to those of ultrabasic rocks such as peridotite and dunite. Isotopic compositions of serpentinites range from -95.5 to -105.7‰ in ${\delta}D$ and +1.7 to 7.1‰ in ${\delta}^{18}O$ corresponding to the continental antigorite type. A wide variation of oxygen isotopic values and $H_2O^+$ content of serpentinites reflect the different water/rock ratios during serpentinization processes. Formation temperature of serpentine minerals are estimated to be unusually high temperature of $488{\sim}646^{\circ}C$ by serpentine-magnetite isotopic fractionation, which belong to continental antigorite type. Calculated ${\delta}^{18}O$ value of serpentinized fluid during serpentinization is suggested that the hydrothermal fluid responsible for serpentinization be originated from the magmatic fluid with a minor influx of paleo-meteoric water in this area.

  • PDF

Basic characterization of uranium by high-resolution gamma spectroscopy

  • Choi, Hee-Dong;Kim, Junhyuck
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.929-936
    • /
    • 2018
  • A basic characterization of uranium samples was performed using gamma- and X-ray spectroscopy. The studied uranium samples were eight types of certified reference materials with $^{235}U$ enrichments in the range of 1-97%, and the measurements were performed over 24 h using a high-resolution and high-purity planar germanium detector. A general peak analysis of the spectrum and the $XK_{\alpha}$ region of the uranium spectra was carried out by using HyperGam and HyperGam-U, respectively. The standard reference sources were used to calibrate the spectroscopy system. To obtain the absolute detection efficiency, an effective solid angle code, EXVol, was run for each sample. Hence, the peak activities and isotopic activities were determined, and then, the total U content and $^{234}U$, $^{235}U$, and $^{238}U$ isotopic contents were determined and compared with those of the certified reference values. A new method to determine the model age based on the ratio of the activities of $^{223}Ra$ and $^{235}U$ in the sample was studied, and the model age was compared with the known true age. In summary, the present study developed a method for basic characterization of uranium samples by nondestructive gamma-ray spectrometry in 24 h and to obtain information on the sample age.

DEVELOPMENT OF LEAD SLOWING DOWN SPECTROMETER FOR ISOTOPIC FISSILE ASSAY

  • Lee, YongDeok;Park, Chang Je;Ahn, Sang Joon;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.837-846
    • /
    • 2014
  • A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ~E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

옥천지향사대 내 수안보-수산 지역에 분포하는 함력천매암질암 기질의 화학 조성과 탄산염암의 안정동위원소 연구 (Geochemical and Stable Isotopic Studies of the Matrix of Pebble Bearing Phyllitic Rocks and Carbonate Rocks from the Suanbo and Susanri District in the Okchon Geosynclinal Zone)

  • 김규한;민경덕
    • 자원환경지질
    • /
    • 제29권1호
    • /
    • pp.25-33
    • /
    • 1996
  • Stable isotopic ratios of the carbonate rocks and chemical compositions of the matrix of pebble bearing phyllitic rocks known as the Hwanggangri Formation, which are in hot debate on their origin such as tillite, debris flow and turbidite, were determined to interpret their depositional environment. Argillaceous matrix of the pebble bearing phyllitic rocks has a high content of CaO (av. 19.5%) and MgO (av. 8.3%), corresponding to calcareous sandy shale. No difference of chemical compositions including trace elements and REE is in the matrices between the Hwanggangri and the Kunjasan Formations. Carbonate rocks from the Okchon zone and outside of the zone range $-2.5{\sim}+6.1$‰ in ${\delta}^{13}C$ and $+5.8{\sim}+25.9$‰ in ${\delta}^{18}O$, indicating normal marine limestone. However, unusally $^{13}C$ enriched carbonate rocks might be deposited in the highly evaporated sedimentary basin. A wide variation of ${\delta}^{18}O$ values is responsible for metamorphism with a $^{18}O$ depleted meteoric water. Isotopic equilibrium temperatures by graphite-calcite geothermometer show a higher metamorphic temperature ($547{\sim}589^{\circ}C$) in the Okchon zone than those ($265{\sim}292^{\circ}C$) in the Samtaesan Formation of the Chosun group. Rhythmic alternation of relatively thin shale with thin limestone in the Kounri Formation is not cherty layer but thin limesilicate bed by metasomatic replacement. Judging from the isotopic and chemical compositions of the carbonate rocks and calcareous matrix of the pebble bearing phyllitic rocks, the Hwangganari Formation was deposited in the shallow marine environment favorable to debris flow.

  • PDF

Sensitivity simulation on isotopic fissile measurement using neutron resonances

  • Lee, YongDeok;Ahn, Seong-Kyu;Choi, Woo-Seok
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.637-643
    • /
    • 2022
  • Uranium and plutonium are required to be accounted in spent fuel head-end and major recovery area in pyro-process for safeguards purpose. The possibility of neutron resonance technique, as a nondestructive analysis, was simulated on isotopic fissile analysis for large scale process. Neutron resonance technique has advantage to distinguish uranium from plutonium directly in mixture. Simulation was performed on U235 and Pu239 assay in spent fuel and for scoping examination of assembly type. The resonance energies were determined for U235 and Pu239. The linearity in the neutron transmission was examined for the selected resonance energies. In addition, the limit for detection was examined by changing sample density, thickness and content for actual application. Several factors were proposed for neutron production and the moderated neutron source was simulated for effective and efficient transmission measurement. From the simulation results, neutron resonance technique is promising to analyze U235 and Pu239 for spent fuel assembly. An accurate fissile assay will contribute to an increased safeguards for the pyro-processing system and international credibility on the reuse of fissile materials in the fuel cycle.

Restoration of the isotopic composition of reprocessed uranium hexafluoride using cascade with additional product

  • Palkin, Valerii;Maslyukov, Eugenii
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2867-2873
    • /
    • 2020
  • In reprocessed uranium, derived from an impoverished fuel of light-water moderated reactors, there are isotopes of 232, 234, 236U, which make its recycling remarkably difficult. A method of concentration of 235U target isotope in cascade's additional product was proposed to recover the isotopic composition of reprocessed uranium. A general calculation procedure is presented and a parameters' optimization of multi-flow cascades with additional products. For the first time a numeric model of a cascade that uses the cuts of partial flows of stages with relatively high separation factors was applied in this procedure. A novel computing experiment is carried out on separation of reprocessed uranium hexafluoride with providing a high concentration of 235U in cascade's additional product with subsequent dilution. The parameters of cascades' stages are determined so as to allow reducing the 232, 234, 236U isotope content up to the acceptable. It was demonstrated that the dilution of selected products by the natural waste makes it possible to receive a low enriched uranium hexafluoride that meets the ASTM C996-15 specification for commercial grade.