• Title/Summary/Keyword: Isotope ratios

Search Result 204, Processing Time 0.025 seconds

Identification of the Food Sources-Metabolism of the Pacific Oyster Crassostrea gigas using Carbon and Nitrogen Stable Isotopic Ratios

  • Yang, Jin-Yong;Shin, Kyung-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.279-284
    • /
    • 2009
  • In order to understand food sources-metabolism for the pacific oyster (Crassostrea gigas), the stable isotope ratios of carbon (${\delta}^{13}C$) and nitrogen (${\delta}^{15}N$) of its gut, gill, and muscle as well as potential food sources (particulate organic matter, sedimentary organic matter, benthic microalgae, seagrass detritus) were determined in Dongdae Bay. Average ${\delta}^{13}C$ and ${\delta}^{15}N$ values reflect that oysters primarily fed on sedimentary organic matter as opposed to suspended organic matter during summer and winter seasons. However, the relatively enriched $^{15}N$ values of particulate organic matter (>$250{\mu}m$) and sedimentary organic matter in the summer may be due to the photosynthetic incorporation of $^{15}N$-enriched nitrogen (DIN) or the spawning events of bivalves. Specific oyster tissues (gut, gill, and muscle) revealed different metabolic pathways, which were determined through analysis of ${\delta}^{13}C$ and ${\delta}^{15}N$ in each organ. The present results suggest the determination of carbon and nitrogen stable isotopes to be a useful approach in ecological research related to the food sources- metabolism of Crassostrea gigas.

Comparison of QuEChERS and Solid Phase Extraction for Accurate Determination of Pesticide Residues in Kimchi Cabbage and Strawberry using Isotope Dilution Mass Spectrometry

  • Seonghee Ahn;Kebede Gebeyehu Mekete;Byungjoo Kim
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.178-185
    • /
    • 2023
  • QuEChERS is used worldwide as a universal sample preparation method with many benefits, such as being quick, easy, cheap, effective, rugged and safe. This study examined whether QuEChERS can be employed in isotope dilution mass spectrometry (ID-MS) for accurate analysis of pesticides in food. The ratios of fortified values and measured values of malathion and fenitrothion using the QuEChERS method were compared with those using the solid phase extract (SPE) method which was previously used in this laboratory. The separations of the two pesticides on DB-5MS and VF-1701MS columns were compared. Malathion and fenitrothion were fortified into kimchi cabbage and pretreated with the QuEChERS method and the SPE method. The results obtained using the DB-5MS column varied according to the sample preparation method, column and pesticide level. Using the VF-1701 column, ratios were 98-102% by both QuEChERS and Carb/NH2 SPE method for all fortification level. Malathion and fenitrothion were fortified into strawberry samples for comparison with kimchi cabbage. The results for the strawberry samples indicated that the ratios were not influenced by the sample preparation methods or GC column. The QuEChERS method could be acceptable in the ID-MS method for pesticide residue analysis in food, however other conditions should be carefully considered for accurate determination, such as the column, amount of analyte and food matrix.

Isotope Measurement of Uranium at Ultratrace Levels Using Multicollector Inductively Coupled Plasma Mass Spectrometry

  • Oh, Seong-Y.;Lee, Seon-A.;Park, Jong-Ho;Lee, Myung-Ho;Song, Kyu-Seok
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.54-57
    • /
    • 2012
  • Mass spectrometric analysis was carried out using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) for the precise and accurate determination of the isotope ratios of ultratrace levels of uranium dissolved in 3% $HNO_3$. We used the certified reference material (CRM) 112-A at a trace level of 100 pg/mL for the uranium isotopic measurement. Multiple collectors were utilized for the simultaneous measurement of uranium isotopes to reduce the signal uncertainty due to variations in the ion beam intensity over time. Mass bias correction was applied to the measured U isotopes to improve the precision and accuracy. Furthermore, elemental standard solution with certified values of platinum, iridium, gold, and thallium dissolved in 3% $HNO_3$ were analyzed to investigate the formation rates of the polyatomic ions of $Ir^{40}$ $Ar^+$, $Pt^{40}$ $Ar^+$, $Tl^{40}$ $Ar^+$, $Au^{40}$ $Ar^+$ for the concentration range of 50-400 pg/mL. Those polyatomic ions have mass-to-charge ratios in the 230-245 m/z region that it would contribute to the increase of background intensity of uranium, thorium, plutonium, and americium isotopes. The effect of the polyatomic ion interference on uranium isotope measurement has been estimated.

Investigation on the Stability of Uric Acid and its Isotope (1,3-15N2) in Ammonium Hydroxide for the Absolute Quantification of Uric Acid in Human Serum

  • Lee, Sun Young;Kim, Kwonseong;Oh, Han Bin;Hong, Jongki;Kang, Dukjin
    • Mass Spectrometry Letters
    • /
    • v.8 no.3
    • /
    • pp.59-64
    • /
    • 2017
  • In clinical diagnosis, it's well known that the abnormal level of uric acid (UA) in human body is implicated in diverse human diseases, for instance, chronic heart failure, gouty arthritis, diabetes, and so on. As a primary method, an isotope dilution mass spectrometry (IDMS) has been used to obtain the accurate quantity of UA in blood or serum and also develop the certificated reference material (CRM) so as to provide a SI-traceability to clinical laboratories. Due to the low solubility of UA in water, an ammonium hydroxide ($NH_4OH$) has been considered as a promising solvent to increase the solubility of UA that enables the preparation of both UA and its isotope standard solution for next IDMS-based absolute quantification. But, because of using this $NH_4OH$ solvent, it gives rise to the unwanted degradation of UA. In this study, we sought to optimize condition for the stability of UA in $NH_4OH$ solution by varying the mole ratios of UA to $NH_4OH$, followed by ID-LC-MRM analysis. In addition, we also inspected minutely the effect of the storage temperatures. Additionally, we also performed the quantitative analysis of UA in the KRISS serum certificated reference material (CRM, 111-01-02A) with diverse mixing ratios of UA to $NH_4OH$ and then compared those values to its certification value. Based on our experiments, adjusting the mole ratio of 1/2 ($UA/NH_4OH$) with the storage temperature of $-20^{\circ}C$ is an effective way to secure both the solubility and stability of UA in $NH_4OH$ solution for next IDMS-based quantification of UA in serum.

A Provenance Study of Iron Archaeological Sites in the Gyeongsang Province: Petrographic and Geochemical Approaches (경상지역 제철유적의 산지추정 연구: 암석기재학 및 지화학적 접근)

  • Jaeguk Jo;Seojin Kim;Jiseon Han;Su Kyoung Kim;Dongbok Shin;Byeongmoon Kwak;Juhyun Hong;Byeongyong Yu;Jinah Lim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.475-499
    • /
    • 2023
  • To infer the provenance of raw iron materials utilized in iron production at the archaeological sites in Gyeongsang province, petrographic and geochemical analyses were conducted for smelting samples and major iron ores sourced from ore deposits. The smelting samples excavated from various iron archaeological sites were classified into different types according to their refining processes, such as iron bloom, iron bloom slag, pig iron, pig iron slag, forging iron flake, smithery iron, iron flake, and arrowhead. These samples exhibited discernable differences in their mineralogical components and texture. The enrichments of major elements such as aluminum and calcium in silicate minerals of the residual slags and the high contents of trace elements such as nickel and copper in some iron-making relics reflect the characteristics of raw iron ores, and thus can be regarded as potential indicators for inferring the provenance of source materials. In particular, the compositional ranges of Pb-Sr isotope ratios for the iron smelting samples were classified into three categories: 1) those exhibiting similar ratios to those of the raw iron ores, 2) those enriched in strontium isotope ratio, and 3) those enriched in both lead and strontium isotope ratios. The observed distinct Pb-Sr isotope characteristics in the iron smelting samples suggest the potential contribution of specific additives being introduced during the high-temperature refining process. These results provide a new perspective on the interpretation of the provenance study of the iron archaeological samples in Gyeongsang province, particularly in terms of the potential contribution of additives on the refining process.

Isotope Selectivity in the CO$_2$Laser Induced Decomposition of Trichloroethylene-H and Trichloroethylene-D

  • Koo Sang Man;Chun Byung Soo;Choo Kwang Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.96-101
    • /
    • 1989
  • The infrared multiphoton decomposition of trichloroethylene-H(TCE-H) and trichloroehtylene-D(TCE-D) was studied by using the high power $CO_2$ laser. The pressure dependence of TCE-H decomposition showed that the HCl elimination channel to form ClC ≡ CCl was the major step at high pressures, while the HC ≡ CCl formation step became important at low pressures. $Cl_2C$ = CHCl ${\rightarrow}$ (high pressure) ClC ${\equiv}$ CCl + HCl ${\rightarrow}$ (low pressure) HC ${\equiv}$ CCl + 2Cl${\cdot}$($Cl_2$) The IRMPD of TCE-H and TCE-D mixtures with 10P(20) laser line showed that optimum conditions of large isotope selectivity were the low system pressures and high laser powers. The experimentally observed dependence of the branching ratios on the pressure and laser fluence, and the isotope selectivity coefficients were quantitatively explained by using the modified energy grained master equations (EGME) model.

Determination of the Origin in both Dissolved Inorganic Nitrogen and Phytoplankton at the Lake Paldang using Stable Isotope Ratios (δ13C, δ15N, δ15N-NO3 and δ15N-NH4) (질산염 및 식물플랑크톤의 안정동위원소비를 이용한 팔당호 수계내의 질소원 기원 연구)

  • Kim, Min-Seob;Lee, Eun-Jeong;Yoon, Suk-Hee;Lim, Bo-La;Park, Jaeseon;Park, Hyunwoo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.452-458
    • /
    • 2017
  • The nitrogen isotope value in both ammonium and nitrate ion were determined at 9 stations during both June and August 2016, in order to understand the origin of DIN at the Han river. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in 8 stations (CP, SB, MHC, P4, SJ, SBC, P2, SC) were no significant variation. However ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in KK (Kyeongan stream) showed significant different in comparison with 8 stations, with an apparent increase of nitrogen isotope values. These results indicate that antropogenic nitrogen source influence on KK station. Also the ${\delta}^{13}C$ and ${\delta}^{15}N$ isotope ratio of phytoplankton (Diatom and Cyanobacteria) in KK (Kyeongan stream) showed heavier values, compared to other study stations. These results indicate that nitrogen isotope value in phytoplankton effects by different nitrogen source in study sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the identification of dissolved inorganic nitrogen origin in aquatic environments.

Variations in carbon and nitrogen stable isotopes and in heavy metal contents of mariculture kelp Undaria pinnatifida in Gijang, southeastern Korea

  • Shim, JeongHee;Kim, Jeong Bae;Hwang, Dong-Woon;Choi, Hee-Gu;Lee, Yoon
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.349-357
    • /
    • 2017
  • Korean mariculture Undaria pinnatifida was collected during the months of January, February, March, and December of 2010, as well as from January of 2011 to investigate the changes in the carbon and nitrogen stable isotope ratios (${\delta}^{13}C$ and ${\delta}^{15}N$) and heavy metal with respect to it growth and to identify the factors that influence such changes. The blades of U. pinnatifida showed ${\delta}^{13}C$ and ${\delta}^{15}N$ in the range (mean) of -13.11 to -19.42‰ (-16.93‰) and 2.99 to 7.57‰ (4.71‰), respectively. Among samples with the same grow-out period, those that weighed more tended to have higher ${\delta}^{13}C$ suggesting a close association between the carbon isotope ratio and growth rate of U. pinnatifida. Indeed, we found a very high positive linear correlation between the monthly average ${\delta}^{13}C$ and the absolute growth rate in weight ($r^2=0.89$). Nitrogen isotope ratio tended to be relatively lower when nitrogen content in the blade was higher, probably due to the strengthening of isotope fractionation stemming from plenty of nitrogen in the surrounding environment. In fact, a negative linear correlation was observed with the nitrate concentration in the nearby seawaters ($r^2=0.83$). Concentrations of Cu, Cd, Pb, Cr, Hg, and Fe in the blades showed a rapid decrease in their concentration per unit weight in the more mature U. pinnatifida. Specifically, compared to adult samples, Cu, Hg, and Pb were concentrated by 30, 55, and 73 folds, respectively, in the young blades. Therefore, U. pinnatifida tissue ${\delta}^{13}C$ is as an indirect indicator of its growth rate, while ${\delta}^{15}N$ values and heavy metal concentrations serve as tracers that reflect the environmental characteristics.

Evaluation of Airborne Pb Sources in an Industrialized City by Applying Pb Isotope Ratios and Concentrations in PM10 (PM10 내 납의 동위원소와 농도를 활용한 산업도시지역 대기 중 납 오염원 평가)

  • Jo, Wan-Kuen;Lee, Heon-Chul;Kim, Mo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • The present study evaluated the major lead sources in a steel metallurgy industrialized city by measuring lead isotopes/lead concentrations of ambient air and potential sources in an industrial area and residential areas according to relative distance. The quality control program obtained during the measurement procedure for lead isotopes and concentrations exhibited $0.5ng/m^3$ for method detection limit, more than 90% for recoveries of standard particulate matters, and lower than 0.2% for reproducibility errors of four lead isotopes ($^{204}Pb$, $^{206}Pb$, $^{207}Pb$, $^{208}Pb$). For all three lead isotope ratios ($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$), the ratios were obtained in the industrial area were closer to nearby residential area than those of a residential area far away from the industrial area, thereby suggesting that lead sources were more similar each other in the industrial and nearby residential area. Furthermore, for both summer and winter seasons ambient lead concentrations were more than four times higher in the industrial area than in the residential areas and in turn, they were higher in the nearby residential area compared with the far-away residential area. As a result, it was suggested that lead emitted from the industrial area would influence more the ambient lead in the nearby residential area than the far-away residential area. Both slag and traffic emissions are likely to be major lead sources in the industrial and nearby residential areas, since their three lead isotope ratios ($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$) were similar to the ratios obtained from ambient air of these two areas. In addition, the lead isotope ratios revealed different pattern between seasons, and the ambient lead concentrations were higher for winter than for summer.