• Title/Summary/Keyword: Isotherms

Search Result 649, Processing Time 0.032 seconds

Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage (석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果))

  • Kim, Yong-Woong;Lee, Hyun-Hee;Yoon, Chung-Han;Shin, Bang-Sup;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • To reduce the environmental contamination and to utilize fly ash massively produced from the coal power plant every year, we synthesized the artificial zeolite using fly ash treated with alkaline, and then analyzed the mineralogical and morphological properties by X-ray, IR, and SEM. The amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed by the fly ash and the artificial zeolite were determined with reaction time, amount of adsorbate used, ion concentrations. The results obtained from the pot experiments packed with the top soil, amended with granulated artificial zeolite which was made by treatment of 4% polyvinylalcohol, showed that CEC of the artificial zeolite was $257.7cmol^+kg^{-1}$, that was almost 36 times greater than that of fly ash. The ratio of $SiO_2/Al_2O_3$ decreased but the amount of Na increased. The physico-chemical properties analyzed by X-ray, IT, and SEM represented that the artificial zeolite synthesized had a similar morphological structure to that of the natural zeolite. The structures of the artificial zeolite had a significantly enlarged surface having a lot of pores, while the fly ash looked like spherical smooth shape with having not pores on the surface. Thus, the artificial zeolite was successfully synthesized. The results of adsorption isotherms of fly ash and artificial zeolite showed that the amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed increased as the equilibrium concentration increased, while $NH_4{^+}$ was strongly adsorbed on the surface of fly ash and artificial zeolite than that of $K^+$. The most distinctive growth of Chinese cabbage was found from the top soil(NPK + soils + 20% of granulated artificial zeolite + 5% of compost). Therefore, we concluded that one of the most effective methods to effectively recycle a fly ash was to make the artificial zeolite as we did in this experiment.

  • PDF

Interstitial Hyperthermia by Radiofrequency Needle Electrode System : Phantom and Canine Brain Studies (8 MHz 라디오파를 이용한 자입식 온열치료 -조직등가물질을 통한 온도분포 및 개 뇌실질의 조직병리 변화에 관한 연구-)

  • Lee, Hyung-Sik;Chu, Sung-Sil;Sung, Jin-Sil;Suh, Chang-Ok;Kim, Gwi-Eon;Loh-John-Juhn-Kyu;Kim, Young-Soo;Kim, Sun-Ho;Chung, Song-Sup;Han, Eun-Kyung;Kim, Tae-Seung
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1991
  • An interstitial radiofrequency needle electrode system was constructed for interstitial heating of brain tissue. Radiofrequency electrodes with Thermotron RF 8 were tested in an agar phantom and in a normal canine brain to determine how variations in physical factors affected temperature distributions. Temperature distributions were checked after heating with 1 mm diameter needle electrode implants on the corners of 1 and 2 cm squares in a phantom and plot isotherms for various electrodes arrangement. We observed that the 1 cm square array would heat a volume with a 1.25 cm radius circular field cross section to therapeutic temperatures ($90\%$ relative SAR using Tm) and the 2 cm square array with a 1.75 cm radius rectangular field with central inhomogeneity. With 2 cm long electrode implants, we observed that the 1 cm square array would heat a 3 cm long sagittal section to therapeutic temperature ($90\%$ relative SAR using Tm). We found that radiofrequency electrodes could be selected to match the length of the heating area without affecting its performance. The histopathological changes associated with RF heating of normal canine brains have been correlated with thermal distributions. RF needle electrode heating was applied for 50min to generate tissue temperatures of $43^{\circ}C$. We obtained a quarter of the heated tissue material immediately after heating and sacrificed at intervals from $7\sim30$days. The acute stage (immediately after heating) was demonstrated by liquefactive necrosis, pyknosis of neuronal element in the gray matter and by some polymer-phonuclear leukocytes infiltration. The appearance of lipid-laden macrophages surrounding the area of liquefaction necrosis was demonstrated in all three sacrificed dogs. Mild gliosis occurring around the necrosis was demonstrated in the last sacrificed (Days 30) canine brain.

  • PDF

Adsorption and movement of Alachlor and Chlorothalonil in the representative soil of Cheju Island (제주도 대표 토양에서 Alachlor와 Chlorothalonil의 흡착과 이동 연구)

  • Hyun, Hae-Nam;Oh, Sang-Sil;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.135-143
    • /
    • 1995
  • This study was conducted to investigate the adsorption characteristics, distribution coefficients, and movement of alachlor(2-chloro-2', 6'-dimethyl-N-(methoxymethyl) acetanilide) and chlorothalonil(tetrachloroisophthalonitrile) for the 3 soils sampled from major soil groups in Cheju Island. Namwon, Jeju, and Mureng soils used in this study were classified as black volcanic ash soil, dark brown volcanic ash soil and dark brown nonvolcanic soil, respectively. Organic carbon content and CEC of Namwon soil were very high and those of Mureung soil were very low. Linear and Freundlich adsorption isotherms were the best to fit the adsorption of alachlor and chlorothalonil in the soils. K value, Freundlich coefficient, of alachlor for Namwon soil was 21.38, being 5.4 and 97.2 times higher than that for Jeju and Mureung soils respectively. The values of chlorothalonil for the soils were similar to those of alachlor but were much higher than them. When Mureung, Jeju and Namwon soil columns were leached with a solution containing 10.25 mg/l of alachlor and 1.50 mg/l of chlorothalonil, alachlor was first detected at 0.265, 0.47, and 1.86 pore volume (PV) and chlorothalonil was 3.71, 4.7 and 17.5 PV, respectively. The pore volumes at $C/C_o=1$ of alachlor in the leachates from Mureung, Jeju and Namwon soil columns were 1.1, 3.7 and 6.6 PV and those at $C/C_o=0.2$ of chlorothalonil were 7.5, 8.5 and 27.5, respectively. This means that the deceasing order of the mobility of the chemicals in soils was Mureung soil>Jeju soil${\gg}$Namwon soil. The pore volumes detecting $C/C_o=0.5$ of alachlor and $C/C_o=0.05$ of chlorothalonil in leachate were positively correlated with the distribution coefficients for the soils.

  • PDF

Determination of Soil Phosphorus and Zinc Interactions using Desorption Quantity-Intensity Relationships (탈착 유효량과 가용량의 연관성을 이용한 토양 인산과 아연의 상관 관계 측정)

  • Lee, Jin-Ho;Doolittle, James J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.59-65
    • /
    • 2004
  • Interactions of phosphorus and zinc in soils are important to determine the availability of the elements because those elements are closely related in the agricultural environment. The objective of this study was to investigate the interactions of P and Zn using desorption quantity (Q)-intensily(I) isotherms. Physically and chemically different soils, acidic Egan, acidic sandy Egeland, calcareous Glenham, and neutral Maddock, were used. The soils were enriched with different concentrations of P and Zn as $KH_2PO_4$ and $ZnSO_4$ solutions, respectively. Zinc enrichments affected availability of P in the Egan soil, which contained higher amounts of clay, organic matter, and exchangeable Fe than the other soils tested. After Zn enrichments, the pH drastically decreased in Egeland sandy soil, not changed in the calcarious Glenham soil, and slightly decreased in Egan and Maddock soil systems. The values of $Q_{max}$ and $I_0$ of phosphorus decreased with increasing Zn concentrations enriched in all soils, the changes of those values did not influence the P buffering power, |$BP_o$| values, in most soils. The influences of P treatment on Zn availability were varied. The values of Zn buffering capacity, $BC_{Zn}$, were lowest in the Egeland soil that had the lowest soil pH, amounts of clay minerals, organic matter, CEC, and exchangeable Fe, and were highest in the calcareous Glenham soil. The $BC_{Zn}$ values ranged from 202 to 4480. With P application, the changes of $BC_{Zn}$ values were more affected by the changes of soil solution Zn contents (I) than the changes of DTPA extractable Zn contents(Q). The change of Q and I values was found to be dependent upon soil properties, especially, soil pH.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(III) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(III) - 열역학적 특성을 중심으로)

  • Na, Choon-Ki;Jeong, Jin-Hwa;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.260-269
    • /
    • 2012
  • The aim of this study is to evaluate the applicability of adsorption models for understanding the thermodynamic properties of adsorption process. For this study, the adsorption isotherm data of $NO_3$-N ion onto a commercial anion exchange resin obtained at various experimental conditions, i.e. different initial concentrations of adsorbate, different dosages of adsorbent, and different temperatures, were used in calculating the thermodynamic parameters and the adsorption energy of adsorption process. The Gibbs free energy change (${\Delta}G^0$) of adsorption process could be calculated using the Langmuir constant $b_M$ as well as the Sips constant, even though the results were significantly dependant on the experimental conditions. The thermodynamic parameters such as standard enthalpy change (${\Delta}H^0$), standard entropy change (${\Delta}S^0$) and ${\Delta}G^0$ could be calculated by using the experimental data obtained at different temperatures, if the adsorption data well fitted to the Langmuir isotherm model and the plot of ln b versus 1/T gives a straight line. As an alternative, the empirical equilibrium constant(K) defined as $q_e/C_e$ could be used for evaluating the thermodynamic parameters instead of the Langmuir constant. The results from the applications of D-R model and Temkin model to evaluate the adsorption energy suggest that the D-R model is better than Temkin model for describing the experimental data, and the availability of Temkin model is highly limited by the experimental conditions. Although adsorption energies determined using D-R model show significantly different values depending on the experimental conditions, they were sufficient to show that the adsorption of $NO_3$-N onto anion exchange resin is an endothermic process and an ion-exchange process.

Catalyst Carriers Preparation and Investigation of Catalytic Activities for Partial Oxidation of Methane to Hydrogen over Ru Impregnated on SPK and SPM Catalysts (메탄의 부분산화반응으로부터 수소제조를 위한 촉매담체(SPK, SPM) 제조 및 Ru 담지 촉매의 활성도 조사)

  • Seo, Ho Joon;Fan, Shijian;Kim, Yong Sung;Jung, Do Sung;Kang, Ung Il;Cho, Yeong Bok;Kim, Sang Chai;Kwon, Oh-Yun;Sunwoo, Chang Shin;Yu, Eui Yeon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.581-584
    • /
    • 2008
  • The catalyst carriers of the mesoporous layer compounds were prepared to carry out the partial oxidation of methane(POM) to hydrogen. The catalytic activities of POM to hydrogen were investigated over Ru(3)/SPK and Ru(3)/SPM catalyst in a fixed bed flow reactor under atmosphere. In addition, the catalysts and carriers were characterized by BET, TEM, TPR. The BET surface areas of the silica-pillared $H^+-kenyaite$(SPK) and the silica-pillared $H^+-magadite$(SPM) were $760m^2/g$ and $810m^2/g$, repectively, and the average pore sizes were 3.0 nm and 2.6 nm, repectively. The nitrogen adsorption isotherms were type IV with developed hysteresis. The TEM showed that the mesoporous layer compounds were formed well. The Ru(3)/SPK and the Ru(3)/SPM catalyst were obtained high hydrogen yields(90%, 87%), and were kept constant high hydrogen yields even about 60 hours at 973 K, $CH_4/O_2=2$, $1.25{\times}10^{-5}g-Cat.hr/ml$. The TPR peaks of Ru(3)/SPK and the Ru(3)/SPM catalyst showed the similar reducibilities around 453 K and 413 K. It could be suggested that SPK and SPM had the physicochemical properties as oxidation catalyst carries from these analysis data.

Effects of pH and Redox Conditon on Silica Sorption in Submerged soils (담수조건(湛水條件)에서 토양산도(土壤酸度)와 산화환원(酸化還元) 전위(電位)가 토양(土壤)의 규산흡착(珪酸吸着)에 미치는 영향(影響))

  • Lee, Sang-Eun;Neue, Heins Ulitz
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.111-126
    • /
    • 1992
  • Silica sorption isotherm belonged to the C-type with weak L-type characteristics according to the classification system of adsorption isotherm. Silica sorption isothem fitted well to the Freundlich and Tempkin equation but not to the Langmuir equation. The color interference probably due to $Fe^{2+}$ during spectrometric silca determination by Molybdenum-blue method affected the sorption isotherm in reduced soils or low pH. Four parameters such as the intercept of Freundlich equation, the slope of Tempkin equation, the "Silica reactivity", and the "C-type slope", where the last two parameters were termed in the current study, were examined to assess treatment effects on silica sorption. Among them the "C-type slope" was found out to be the best parameter. The C-type isotherms showed the same high correlation coefficient as Freundlich and Tempkin equation when regressed to the sorption isothem. Plotting the C-type slope on a logarithmic scale vs. the pH showed high linearity. Using the "C-type slope" as a perameter, the pH and soil type affected the silica sorption while the effect of redox condtion was not significant. All Fe and Al extracted by the various reagents, and OM were highly correlated to silica sorption. Among them $Fe_d$ was identified as the highest influencing soil property. Since there is no equivalent reliable method to discriminate the forms of the soil Al-oxides their likely importance remains unclear.

  • PDF

Thermal and Uplift Histories of the Jurassic Granite Batholith in Southern Jeonju: Fission-track Thermochronological Analyses (전주 남부지역 쥬라기 화강암질 저반체의 지열사와 융기사: 피션트랙 열연대학적 해석)

  • Shin, Seong-Cheon
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.389-410
    • /
    • 2016
  • Wide ranges of fission-track (FT) ages were obtained from the Jurassic granite batholith in Jeonju-Gimje-Jeongeup area, southwestern Okcheon Belt: sphene=158~70 Ma; zircon=127~71 Ma; apatite=72~46 Ma. Thermochronological analyses based on undisturbed primary cooling and reset or partially-reduced FT ages, and some track-length data reveal complicated thermal histories of the granite. The overall cooling of the batholith is characterized by a relatively rapid earlier-cooling (${\sim}20^{\circ}/Ma$) to $300^{\circ}C$ isotherm since its crystallization and a very slow later-cooling ($2.0{\sim}1.5^{\circ}/Ma$) through the $300^{\circ}C-200^{\circ}C-100^{\circ}C$ isotherms to the present surface temperature. It is indicated that the large part of Jurassic granitic body experienced different level of elevated temperatures at least above $170^{\circ}C$ (maximum>$330^{\circ}C$) by a series of igneous activities in late Cretaceous. Consistent FT zircon ages from duplicate measurements for two sites of later igneous bodies define their formation ages: e.g., quartz porphyry=$73{\pm}3Ma$; diorite=$73{\pm}2Ma$; rhyolite=$72{\pm}3Ma$; feldspar porphyry=$78{\pm}4Ma$ (total weighted average=$73{\pm}3Ma$). Intrusions of these later igneous bodies and pegmatitic dyke swarms might play important roles in later thermal rise over the study area including hot-spring districts (e.g., Hwasim, Jukrim, Mogyokri, Hoebong etc.). On the basis of an assumption that the latercooling of granite batholith was essentially controlled by the denudation of overlying crust, the uplift since early Cretaceous was very slow with a mean rate of ~0.05 mm/year (i.e., ~50 m/Ma). Estimates of total uplifts since 100 Ma, 70 Ma and 40 Ma to present-day are ~5 km, ~3.5 km and ~2 km, respectively. The consistent values of total uplifts from different locations may suggest a regional plateau uplift with a uniform rate over the whole granitic body.

Phosphorus Adsorption Characteristic of Ferronickel and Rapid Cooling Slags (페로니켈슬래그와 제강급랭슬래그의 인 흡착특성)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Seong-Heon;Park, Min-Gyu;Kang, Byung-Hwa;Lee, Sang-Won;Lee, Seong-Tae;Choi, Ik-Won;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2014
  • BACKGROUND: The ferronickel and rapid cooling slags used in present study are industrial wastes derived from a steel factory in Korea. These slags are used as almost road construction materials after magnetic separation. However, the use of slag to remove phosphorus from wastewater is still a relatively less explored. The objective of this work was to evaluate the feasibility of ferronickel slag (FNS) and rapid cooling slag (RCS) as sorbents for phosphorus removal in wastewater. METHODS AND RESULTS: Adsorption experiments were conducted to determine the adsorption characteristics of the FNS and RCS for the phosphorus. Adsorption behaviour of the phosphorus by the FNS and RCS was evaluated using both the Freundlich and Langmuir adsorption isotherm equations. FNS and RCS were divided into two sizes as effective sizes. Effective sizes of FNS and RCS were 0.5 and 2.5 mm, respectively. The adsorption capacities (K) of the phosphorus by the FNS and RCS were in the order of RCS 0.5 (0.5105) > RCS 2.5 (0.3572) ${\gg}$ FNS 2.5 (0.0545) ${\fallingdotseq}$ FNS 0.5 (0.0400) based on Freundlich adsorption isotherm. The maximum adsorption capacities (a; mg/kg) of the phosphorus determined by the Langmuir isotherms were in the order of RCS 0.5 (3,582 mg/kg) > RCS 2.5 (2,983 mg/kg) > FNS 0.5 (320 mg/kg) ${\fallingdotseq}$ FNS 2.5 (187 mg/kg). RCS 0.5 represented the best sorbent for the adsorption of phosphorus. In the experiment, the Langmuir model showed better fit with our data than the Freundlich model. CONCLUSION: This study indicate that the use of RCS in constructed wetlands or filter beds is a promising solution for phosphorus removal via adsorption and precipitation mechanisms.