• Title/Summary/Keyword: Isotherms

Search Result 649, Processing Time 0.02 seconds

Determination of Adsorption Isotherms and Separation of L-arabinose and D-ribose in Cation Exchange Chromatography and HPLC (양이온 교환 크로마토그래피와 HPLC에서의 L-arabinose와 D-ribose의 분리 및 등온 흡착곡선 결정)

  • Jeon, Young-Ju;Kim, In-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • The use of L-carbohydrates and their corresponding nucleosides in medicinal application has greatly increased. For example L-ribose has been much in demand as the starting material for curing hepatitis B. High performance liquid chromatography (HPLC) method was studied for the analysis of ribose and arabinose fractions from ion exchange chromatography (IEC). Dowex Monosphere 99 Ca/320 resin was packed in IEC to separate ribose and arabinose under various operating conditions. $NH_{2}$ and sugar HPLC columns were then used to analyze the fractions from the IEC column. Pulse input method (PIM) was also used to measure adsorption isotherms of ribose and arabinose in the Dowex column and HPLC columns. Experimental results and simulations by ASPEN chromatography were compared with fair agreement.

Improvement of Accuracy for Determination of Isosteric Heat of Hydrogen Adsorption (부피법을 이용한 저온 등량 수소 흡착열 측정법 개선)

  • Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.127-131
    • /
    • 2017
  • Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).

Immobilization of MTBE using cyclodextrins

  • Baek, Ki-Tae;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.120-123
    • /
    • 2003
  • Immobilization behavior of methyl tert-butyl ether (MTBE) by various cyclodextrins(CDs) was studied to investigate the feasibility of MTBE removal using cyclodexrins. Even though MTBE has relatively low hydrophobicity and higher polarity compared to other organics, it was effectively immobilized by CDs. The immobilization isotherms was shown as a type of Freundlich isotherms, and the immobilization capacity of -CDs was the largest among natural COs. The initial apparent association constant for MTBE-CD complex follows the order : gamma = beta > methyl-beta > hydroxypropyl beta > alpha. These differences of the constants are related to the size of MTBE and CDs. The size of beta-CD and gamma-CD is large to encapsulate MTBE molecule into the cavity, which that of alpha-CB is too small to encapsulate MTBE.

  • PDF

Solubilization Isotherms of Chlorobenzene in ionic Surfactant Solutions

  • Baek, Ki-Tae;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.201-204
    • /
    • 2003
  • Solubilization isotherms of 1-chlorobenzene (MCB) and 1, 2-dichlorobenzene (DCB) were investigated in ionic surfactant solutions such as sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and dedecyltrimethylammonium chloride (DMAC). The solubilization extent of DCB was much higher than that of MCB because of the main driving force of solubilization Is hydrophobic interactions between chlorobenzenes and hydrophobic interior of ionic micelles and DCB is more hydrophobic than MCB. CPC showed highest solubilization capacity because of longest hydrophobic tails. Simultaneous solubilization of MCB and DCB decreased slightly the extent solubilization of both MCB and DCB because the solubilization locus in the micelles is same.

  • PDF

Acid Blue 92 (Leather Dye) Removal from Wastewater by Adsorption using Biomass Ash and Activated Carbon

  • Purai, Abhiti;Rattan, V.K.
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The adsorption of Acid Blue 92 onto three low cost and ecofriendly biosorbents viz., cow dung ash, mango stone ash and parthenium leaves ash and commercial activated carbon have discussed in this work. The ash of all the mentioned bio-wastes was prepared in the muffle furnace at $500^{\circ}C$ and all the adsorbents were stored in an air thermostat. Experiments at total dye concentrations of 10~100 mg/L were carried out with a synthetic effluent prepared in the laboratory. The parameters such as pH and dye concentration were varied. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. The results indicate that cow dung ash, mango stone ash and parthenium leaves ash could be employed as low-cost alternatives to commercial activated carbon in wastewater treatment for the removal of dye.

Removal of Dyes by Biosorption on Biomass Ash

  • Rattan, V.K.;Singh, Harminder;Purai, Abhiti
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • The use of low cost and ecofriendly adsorbent has been investigated as an alternative to the current expensive method of removing dyes from wastewater. Cow dung cakes were collected from the nearby village which was burnt in a muffle furnace at $500^{\circ}C$ to obtain the required ash. This paper deals with the removal of Reactive Blue 221, Acidoll Yellow 2GNL and Olive BGL which are mainly used in textile industry, from aqueous solution by cow dung ash without any pretreatment. The adsorption was achieved under different pH, adsorbate concentration and the applicability of Langmuir and Freundlich isotherms were examined.

Studies on the Adsorptive Properties of Korean Kaolin(III) Adsorption at Solid-Liquid Interface (국산카올린의 흡착성에 관한 연구(III) 고체-액체 계면 흡착)

  • 이계주
    • YAKHAK HOEJI
    • /
    • v.29 no.6
    • /
    • pp.380-386
    • /
    • 1985
  • The adsorption of quinine, atropine and methylrozaniline chloride from aqueous phase by different kaolins was studied to innovated utilization of Korean kaolins as pharmaceutical agents. The adsorption isotherms were determined at $27{\pm}1^{\circ}C$ and the results were plotted according to the Langmuir equation. The Langmuir constants were calculated from adsorption isotherms of quinine and methylrozaniline chloride; a=1.46, 1.34 b=5.7, 9.3 and slope=0.175, 0.108, respectively. The kaolins gave the same type of curves with the two alkaloids and methylrozaniline chloride. The white colored premium grade kaolins were better adsorbent for the alkaloids and methylrozaniline chloride than the lower grade ones. The results indicate that the premium grade kaolins could be utilized as an ingredients in intestinal preparations. The condition of activation for the better adsorption was under the cases with the higher temperature and the lower pressure. The smaller particle size, the greater was adsorption power and the activated kaolins had superior adsorptive properties at higher pH value than at higher hydrogen-concentrations.

  • PDF

Adsorption Characteristic of Hydrogen and Methane on Activated Carbon (활성탄에 대한 수소화 메탄의 흡착특성)

  • Jin, Yinzhe;Choi, Dae-Ki;Row, Kyung-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.307-314
    • /
    • 2005
  • In this work, a static volumetric method was experimentally implemented to measure the adsorption isotherm of hydrogen and methane by the activated carbon. The equilibrium data of stationary phase and mobile phase were correlated into the Langmuir, Freundlich, Langmuir-Freundlich, and Toth isotherms, respectively. In addition, the comparison between prediction and experimental data was made. By a nonlinear regression analysis, the experimental parameters in the equilibrium isotherms were estimated and compared. Then, the linear and quadratic equations for pressure and temperature to adsorption amounts were expressed. The adsorption amounts were increased with the pressure increase and the temperature decrease.

Adsorption Mechanism of Benzene and Its Derivatives on Graphite Surfaces (벤젠과 그 유도체들의 흑연표면 위의 흡착메카니즘)

  • Kim Yunsoo;Ahn, Young-Soo;Pak, Hyung-Suk;Chang, Sei-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.79-84
    • /
    • 1974
  • Adsorption isotherms of benzene and its derivatives on Spheron 6, a graphitized carbon black, are obtained using a sensitive quartz beam microbalance. From the isotherms the molecular area of each adsorbate on Spheron 6 is calculated on the basis of nitrogen area of 16.2 $A^2$. the results show that the molecules of each species are adsorbed on Spheron 6 with the planes of benzene rings lying flat on the surfaces and doing hindered rotation.

  • PDF

A Theoretical Analysis of Two Phase Existence Phenomena on Surface with the Two Dimensional Cluster Aggregation Model (2차원 클러스터 응집모형을 통한 표면 2상공존 현상에 대한 이론적 분석)

  • Choi, Sung-Ryool
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1365-1371
    • /
    • 2013
  • We have introduced two dimensional cluster aggregation model to explain theoretically two phase coexistence phenomena such that adsorption is increased sharply discontinuous in particular pressure on the surface. And then, we have derived adsorption isotherms by applying fundamental statistical thermodynamics and Lagrange multipliers to the our model. By analyzing the our derived adsorption isotherms, we can explain well qualitatively that two phase coexistence on the surface adsorption would be a phenomena that occurs with the strong attractive forces between the adsorbed particles.