• Title/Summary/Keyword: Isothermal Temperature

Search Result 700, Processing Time 0.021 seconds

An Isothermal Temperature Source with a Large Surface Area using the Metal-Etched Microwick-Inserted Vapor Chamber Heat Spreader

  • Go, Jeong-Sang;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.681-688
    • /
    • 2004
  • For use of the thermal cycle of the biochemical fluid sample, the isothermal temperature source with a large surface area was designed, fabricated and its thermal characterization was experimentally evaluated. The comprehensive overview of the technology trend on the temperature control devices was detailed. The large surface area isothermal temperature source was realized by using the vapor chamber heat spreader. The cost-effectiveness and simple manufacturing process were achieved by using the metal-etched wick structure. The temperature distribution was quantitatively investigated by using IR temperature imaging system at equivalent temperatures to the PCR thermal cycle. The standard deviation was measured to be within 0.7$^{\circ}C$ for each temperature cycle. This concludes that the presented isothermal temperature source enables no temperature gradient inside bio-sample fluid. Furthermore it can be applied to the cooling of the electronic devices due to its slimness and low thermal spreading resistance.

Isothermal Distribution Map on the Korean Peninsula to Improve the Accuracy of the Environmental Planning (국토환경계획 정도(精度) 향상 목적의 지형고도속성을 반영한 한반도 등온분포도 작성)

  • Kim, Won-Joo;Lee, Gwan-Gyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.87-93
    • /
    • 2008
  • In order to manage national environment effectively, one has to understand its ecological traits. The difference of temperature determines ecological traits of each respective region. In other words, temperature differentials on surface make a great impact on botanical structure. Currently, isothermal data-produced by meteorological stations based upon time series analysis-are widely used to plan and manage national environment. Nonetheless, the isothermal data do not reflect real surface temperature of regions. Because of numerous mountainous terrains in the Korean peninsula where temperature varies widely according to altitude, the range of temperature distribution-that reflects altitudinal change-has to be paid special attention. This study aims at expressing in space isothermal distribution that is necessary to plan and manage national environment effectively. In addition, not just South Korea, but also North Korea was included for isothermal distribution. As a result, this study corrected established isothermal lines up to date and demonstrated that altitude, latitude, and distance from coastal lines greatly influence temperature distribution of the Korean peninsula.

High Temperature Cure Behavior of Unsaturated Polyester Resin (불포화 폴리에스터 수치의 고온경화특성 연구)

  • 김형근;오제훈;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.38-41
    • /
    • 2000
  • High temperature cure characteristics of polyester resin systems were investigated by isothermal and dynamic differential scanning calorimetries. During isothermal scanning, the experimental procedure was modified to reduce the initial Boss of heat. no kinetic equation from the isothermal experiment was compared with that from the dynamic experiment.

  • PDF

Numerical analysis of natural convection from a horizontal isothermal surface immersed in water near its density extremum (최대밀도점 부근의 물속에 잠겨있는 수평등온도면에 의하여 야기되는 자연대류의 수치해석)

  • 김병하;조승환;유갑종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.197-206
    • /
    • 1990
  • Numerical results of heat transfer from a horizontal isothermal surface are presented for wall temperature T$_{w}$ = 0 .deg. C and ambient water temperature, T$_{\infty}$, from 1 .deg. C to 15 .deg. C. They include streamlines, temperature profiles, local heat transfer coefficients and average Nusselt numbers for the entire flow fields. For a upward-facing horizontal isothermal surface, the results show steady two dimensional flow regimes for T$_{\infty}$ .leg. 4.4 .deg. C, but no solution was obtained above T$_{\infty}$ = 4.4 .deg. C. For a downward-facing horizontal isothermal surface, the flow regimes are steady two dimensional flow for T$_{\infty}$ .geq. 4.9 .deg. C, and the numerical calculation was failed below this ambient water temperature. The mean Nusselt number has its maximum value at about T$_{\infty}$ = 3.4 .deg. C for upward-facing horizontal isothermal surface. For the case of downward-facing horizontal isothermal surface, the mean Nusselt number increases as the ambient water temperature increases.es.s.s.

Effect of Patenting Temperature and Isothermal Time on the Phase Transformation and Microstructure Change in SAE 1078 Steel (SAE 1078 강의 파텐팅 온도 및 등온유지 시간에 따른 상변태 및 미세조직 변화)

  • Gi-hoon Kwon;Hyunjun Park;Kuk-hyun Yeo;Young-Kook Lee;Sang-gweon Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.255-261
    • /
    • 2024
  • To study the effects of patenting temperature and isothermal holding time on the phase transformation and mechanical property changes of SAE 1078 steel, the patenting process was performed at 460℃, 560℃, and 660℃ for isothermal times (30 s, 60 s, 90 s, 120 s, and 150 s) after nitrogen cooling under austenitizing conditions (1000℃, 2 min). In this study, a scanning electron microscope was used to measure the microstructure and interlamellar spacing of pearlite according to process variables, and an X-ray diffraction analyzer was used to calculate the phase fraction. Cooling rate is approximately 18.6℃/s from the austenitizing temperature to the patenting temperature and pearlite transformation begins at 597~602℃. As the patenting temperature increases, the rate of carbon diffusion during isothermal step increases, so a relatively coarse pearlite structure is formed, and the hardness tends to decrease overall. As the isothermal holding time increased, the hardness of the treated specimens converged to 420Hv, 376Hv, and 268Hv, respectively, because the phase transformation was sufficiently completed at 460℃, 560℃, and 660℃. On the other hand, as the isothermal holding time became shorter, sufficient phase transformation did not occur after the isothermal process, so retained austenite existed, resulting in a decrease in hardness.

Pyrolysis Properties of Lignins Extracted from Different Biorefinery Processes

  • Lee, Hyung Won;Jeong, Hanseob;Ju, Young-Min;Youe, Won-Jae;Lee, Jaejung;Lee, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.486-497
    • /
    • 2019
  • The non-isothermal and isothermal pyrolysis properties of H lignin and P lignin extracted from different biorefinery processes (such as supercritical water hydrolysis and fast pyrolysis) were studied using thermogravimetry analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). The lignins were characterized by ultimate/proximate analysis, FT-IR and GPC. Based on the thermogravimetry (TG) and derivative thermogravimetry (DTG) curves, the thermal decomposition stages were obtained and the pyrolysis products were analyzed at each thermal decomposition stage of non-isothermal pyrolysis. The isothermal pyrolysis of lignins was also carried out at 400, 500, and $600^{\circ}C$ to investigate the pyrolysis product distribution at each temperature. In non-isothermal pyrolysis, P lignin recovered from a fast pyrolysis process started to decompose and produced pyrolysis products at a lower temperature than H lignin recovered from a supercritical water hydrolysis process. In isothermal pyrolysis, guaiacyl and syringyl type were the major pyrolysis products at every temperature, while the amounts of p-hydroxyphenyl type and aromatic hydrocarbons increased with the pyrolysis temperature.

Performance Predictions of the Planar-type Solid Oxide Fuel Cell with Computational Flow Analysis (II) - Non-isothermal Model - (유동 해석을 이용한 평판형 고체 산화물 연료전지의 성능 특성 분석 (II) - 비등온 모델 -)

  • Hyun, Hee-Chul;Sohn, Jeong L.;Lee, Joon-Sik;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.963-972
    • /
    • 2003
  • Performance characteristics of the planar-type solid oxide fuel cell (SOFC) are investigated by the analysis of flow fields coupled with heat and mass transfer phenomena in anode and cathode channels. For these purposes, performance analysis of the SOFC is conducted based on electrochemical reaction phenomena in electrodes and electrolyte coupled with flow fields in anode and cathode channels. In the present study, the isothermal model adopted in the previous paper prepared by the same authors is extended to the non-isothermal model by solving energy equation additionally with momentum and mass transfer equations using CFD technique. It is found that the difference between isothermal and non-isothermal models come from non-uniform temperature distribution along anode and cathode electrodes by solving energy equation in non-isothermal model. Non-uniform temperature distribution in non-isothermal model contributes to the increase of average temperature of the fuel cell and influences its performance characteristics.

Microstructural Control of AA7075 Alloy for Thixoextrusion (반용융 압출을 위한 AA7075 합금의 조직제어)

  • Yoon, Young-Ok;Kim, Young-Jig;Kim, Shae-K.;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.249-253
    • /
    • 2005
  • The present study focuses on 7075 aluminum wrought alloy to investigate the potential industrial applications of thixoextrusion process. The microstructural evolution of 7075 aluminum wrought alloy for thixoextrusion has been investigated as a function of isothermal holding temperature and time in the partially remelted semisolid state. The results showed that the liquid fraction increased with increasing isothermal holding temperature and time while the average grain size was inversely proportional to isothermal holding temperature and time up to 5min. However, there was no big change of liquid fraction and average grain size with respect to isothermal holding temperature and time. The important fact that the liquid fraction and average grain size were almost uniform after 5 min holding time is considered very useful for thixoextrusion in terms of process control.

Isothermal Pass Schedule to Prevent Delamination in the Dry Wire Drawing Process (층간분리 방지를 위한 건식 등온 신선 패스 설계)

  • Ko, Dae-Cheol;Lee, Sang-Kon;Kim, Min-An;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.57-63
    • /
    • 2007
  • Wire drawing process of the high carbon steel with a high speed is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In the multi-pass drawing process, temperature rise in each pass affects the mechanical properties of the final product such as bending, torsion, and tensile property, etc. This temperature rise during the deformation promotes the occurrence of delamination, and deteriorates the torsion property and durability of wire. This study investigates the occurrence of delamination in the wire through the torsion test and the evaluation of wire temperature. The excessive wire temperature leads to the occurrence of the delamination. Based on the calculation of the wire temperature, a new pass schedule, which can prevent the delamination due to the excessive wire temperature rise, is designed through the isothermal pass schedule.

The Isothermal Phase Transformation by Low Temperature Aging in Y-TZP Powders (저온 열처리에 의한 Y-TZP 분말의 등온 상전이)

  • Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.971-978
    • /
    • 1990
  • The ifluence of transformability and stabilized effects in tetragonal phase on the isothermal phase transformation of Y-TZP at low temperature were investigated. The transformability of Y-TZP powders were gradually increased with calcination temeprature and reached maximum at critical temperature, but when the Y-TZP powders were calcined above critical temperature, transformability of Y-TZP were gradually decreased with increasing calcination temperature. It was concluded that maximum transformability was appeared because particle size effects decreased and constrain effects increased with calcined temperature. The isothermal phase transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amounts of transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amount of transformed monoclinic phase during aging decreased with increasing constrain effects. From these results, the mechanism of isothermal phase transformation and degradation behaviors at low temperature in Y-TZP was concluded that occurred by decreasing of constrain effects due to stress relaxation at grian boundary.

  • PDF