• Title/Summary/Keyword: Isotherm adsorption

Search Result 899, Processing Time 0.026 seconds

Characterization of AC/TiO2 Composite Prepared with Pitch Binder and Their Photocatalytic Activity

  • Chen, Ming-Liang;Bae, Jang-Soon;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1423-1428
    • /
    • 2006
  • In this study, we have prepared pitch binded AC (activated carbon)/$AC/TiO_2$ composites photocatalysts through carbon tetrachloride solvent method. The developed samples were characterized with surface properties, structural crystallinity between AC and $AC/TiO_2$, elemental identification and photocatalytic activity. The results of the textural surface properties demonstrate that there are slight increases in the BET surface area and adsorbed volume from adsorption isotherm of composite samples with increasing of the amount of AC. The SEM results present to the characterization of porous texture on the pitch/AC/$AC/TiO_2$ composites and homogenous compositions in the particle for all the materials used. From XRD data, a weak and broad carbon peak of graphene remained rutile peaks kept with anatase structure were observed in the X-ray diffraction patterns for the pitch/AC/$AC/TiO_2$ composites. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of the pitch/AC/$AC/TiO_2$ composites between relative concentration ($c/c_o$) of MB and UV irradiation time could be attributed to the both effects between photocatalysis of the supported $AC/TiO_2$ and adsorptivity of the two kinds of carbons.

The Effect of Additions of Lime and Starch on the Silica Sorption Characteristics in Submerged Paddy Soil (석탄(石灰) 및 전분첨가(澱粉添加)에 따른 침수(湛水) 토양(土壤)의 규산흡수량(珪酸吸收量) 및 흡착특성(吸着特性) 변화(變化))

  • Yoon, Jung-Hui;Hwang, Ki-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.35-38
    • /
    • 1984
  • A laboratory experiment was carried out to investigate the effects of the additions of lime soluble starch on the behavior of silica in submerged soil. 1. Available silica in the submerged soil was increased as pH come up to neutral condition and Eh decreased. 2. Application of soluble starch accelerating the soil reduction nearly doubled the amount of silica sorbed in soil from silica solution. 3. Silica sorption of soil treated with slaked lime was increased to some extent in the low silica solution but was not showed that constancy in high silica solution. 4. The reaction between amount of silica sorbed in soil and silica concentration in solution followed not Lamgmuir but Freundlich adsorption isotherm.

  • PDF

Chemical Fixation and Sorption of Bentonite for the Removal of Heavy Metals in Acid Mine Drainage (AMD) (광산산성폐수에 함유된 중금속 처리를 위한 Chemical Fixation과 Bentonite의 흡착)

  • Jang, Am;Kim, In-S.
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.33-43
    • /
    • 2000
  • Mining wastes left without any proper treatment are affecting barren or arable lands where are located near and far from source through various pathway Metals are the only hazardous constituents that cannot be destroyed or altered by chemical or thermal methods and must be converted into the most insoluble and harmless form as possible, which have slower leaching rates than the original species, to prevent their reentry into the environment. Three types of chemical additives used in this study to immobilize heavy metals showed high immobilized capacity (q) and the efficiency (k) in the order of CaO, $Na_2$S.$5H_2$O, and $CaCO_3$. In addition, bentonite was considered as a good additive to remedy AM(Acid Mine Drainage) from the results of the physicochemical characteristics and immobilizing capacity. The Freundlich coefficients (n and k) from adsorption isotherm for the heavy metals adsorbed on 50g Benlonite were calculated.

  • PDF

A Study for the Removal of Phosphorous Using Coated Exfoliated Vermiculite (인 제거를 위한 코팅 발포질석 적용 가능성 연구)

  • Kim, Seogku;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.5-13
    • /
    • 2014
  • In this study, exfoliated vermiculite (EV) coated with glycerol was tested for its abiility to remove phosphorus in aqueous solution. The glycerol modified vermiculite (GS) was prepared with EV/glycerol ratio of 1/4 where glycerol contained 4 mol% $H_2SO_4$ and heated until designated temperature. GS heated at $380^{\circ}C$ showed that the specific surface area was $53.1m^2/g$ and mass loss due to oxidation of carbon was maximum from TGA analysis. Removal of phosphorus using GS heated at $380^{\circ}C$ was well explained by Langmuir isotherm model and maximum sorption capacity of 714.3 mg/kg is comparable or greater than those of other clay orignated sorbents for phosphorus.

Quantitative Assay of Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor

  • Hwang, Sang-Yoon;Yoo, Chang-Hoon;Jeon, Jun-Yeoung;Choi, Sung-Chul;Lee, Eun-Kyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.309-314
    • /
    • 2005
  • We performed a basic experiment for the rapid, on-line, real-time measurement of hepatitis B surface antigen using a surface plasmon resonance biosensor. We immobilized anti­HBsAg (hepatitis B surface antigen) polyclonal antibody, as a ligand, to the dextran layer on a CM5 chip surface that had previously been activated by N-hydroxysuccinimide. A sample solution containing HBsAg was fed through a microfluidic channel, and the reflecting angle change due to the mass increase from the binding was detected. The binding characteristics between HBsAg and its polyclonal antibody followed the typical monolayer adsorption isotherm. When the entire immobilized antibody had interacted, no additional, non-specific binding occurred, suggesting the immunoreaction was very specific. The bound antigen per unit mass of the antibody was independent of the immobilized ligand density. No significant steric hindrance was observed at an immobilization density of approximately $17.6 ng/mm^2$. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the ligand was linear up to ca. $40{\mu}g$/mL. This linearity was much higher than that of the ELISA method. It appeared the anti­gen-antibody binding increased as the immobilized ligand density increased. In summary, this study showed the potential of this SPR biosensor-based method as a rapid, simple and multi­sample on-line assay. Once properly validated, it may serve as a more efficient method for HBsAg quantification for replacing the ELISA.

Development of Biomolecular Device Using Biomolecular Film Part 1: Optical Biosensor to Detect the Ethanol Using Langmuir-Blodgett Film of Eilzyme Molecules (생체분자막을 이용한 생물분자소자의 개발 제1부 :효소분자 LB막을 이용한 에탄올 측정용 광학 바이오센서)

  • 최정우;배주연지용이원홍
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.105-112
    • /
    • 1995
  • The fiber-optic biosensor using enzyme-immobilized Langmuir-Blodgett film is developed fort the measurement of ethanol. The enzyme, alcohol dehydrogenase, is immobilized at the molecular level on the arachidic acid monolayer using Langmuir-Blodgett film technique. Based on the ordered multisubstrate mechanism, the immobilized enzyme kinetics is investigated. The optical sensing system is proposed, and sensor signal is proportional to ethanol concentration and is related wish the number of enzyme layers. As the number of deposited LB film layer increases up to 20 1ayers, the high ethanol concentration of 45mM can be measured without the saturation of signal. Surface pressure-area isotherm is measured for the three-different charged-lipids. Arachidic acid is the most suitable for the adsorption of alcohol dehydrogenase based on electrostatic force.

  • PDF

Effect of Pore Structure of Activated Carbon Fiber on Mechanical Properties (활성탄소섬유의 기공구조가 기계적 특성에 미치는 영향)

  • Choi, Yun Jeong;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.318-324
    • /
    • 2018
  • In this study, PAN (polyacrylonitrile) based activated carbon fibers were prepared by water vapor activation method which is a physical activation method. Activation was performed with temperature and time as parameters. When the activation temperature reached 700, 750 and $800^{\circ}C$, the activation was carried out under the condition of a water vapor flow rate of 200 ml/min. In order to analyze the pore structure of activated carbon fibers, the specific surface area ($S_{BET}$) was measured by the adsorption/desorption isotherm of nitrogen gas and AFM analysis was performed for the surface analysis. Tensile tests were also conducted to investigate the effect of the pore structure on mechanical properties of fibers. As a result, the $S_{BET}$ of fibers after the activation showed a value of $448{\sim}902m^2/g$, the tensile strength decreased 58.16~84.92% and the tensile modulus decreased to 69.81~83.89%.

Preparation of Iron Nanoparticles Impregnated Hydrochar from Lignocellulosic Waste using One-pot Synthetic Method and Its Characteristics (One-pot 합성 방법을 이용한 나노 철입자가 담지된 폐목재 기반 하이드로차의 제조 및 특성 평가)

  • Choi, Yu-Lim;Kim, Dong-Su;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, iron nanoparticles impregnated hydrochar (FeNPs@HC) was synthesized using lignocellulosic waste and simple one-pot synthetic method. During hydrothermal carbonization (HTC) process, the mixture of lignocellulosic waste and ferric nitrate (0.1~0.5 M) as a precursor of iron nanoparticles was added and heated to 220℃ for 3 h in a teflon sealed autoclave, followed by calcination at 600℃ in N2 atmosphere for 1 h. For the characterization of the as-prepared materials, X-ray diffraction (XRD), cation exchange capacity (CEC), fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), Energy Dispersive X-ray Spectroscopy (EDS) were used. The change of Fe(III) concentration in the feedstock influenced characteristics of produced FeNPs@HC and removal efficiency towards As(V) and Pb(II). According to the Langmuir isotherm test, maximum As(V) and Pb(II) adsorption capacity of Fe0.25NPs@HC were found to be 11.81 and 116.28 mg/g respectively. The results of this study suggest that FeNPs@HC can be potentially used as an adsorbent or soil amendment for remediation of groundwater or soil contaminated with arsenic and cation heavy metals.

Sorption of Arsenate by the Calcined Mg-Al Layered Double Hydroxide (소성된 Mg-Al Layered Double Hydroxide에 의한 비소(V)의 흡착)

  • Seo, Young-Jin;Kang, Yun-Ju;Choi, Jung;Kim, Jun-Hyeong;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.369-373
    • /
    • 2008
  • Special concern has been given to the elevated arsenic content in soils because of its high mobility and toxicity. Layered double hydroxide (LDH) which has a high anionic exchange capacity is another potential anion adsorbent for toxic anions such as arsenic, chromate and selenium etc. The uptake of arsenate from aqueous solutions by the calcined Mg-Al LDH has been investigated. The sorption capacity was about 530 mmol/kg. Sorption isotherm was defined as L-type in which arsenate was removed by LDH through anion uptake reaction. Arsenate sorption by the calcined Mg-Al LDH was occurred by reconstruction of LDH's framework. Competitive adsorption revealed that Mg-Al LDH had higher selectivity for arsenate than for sulfate. These results strongly suggest that calcined Mg-Al LDH has a promising potential for efficient removal of toxic metal oxides like arsenates from aqueous environments.

Biosorption of Copper by Immobilized Biomass of Pseudomonas stutzeri

  • Cho, Ju-Sik;Hur, Jae-Seoun;Kang, Byung-Hwa;Kim, Pil-Joo;Sohn, Bo-Kyoon;Lee, Hong-Jae;Jung, Yeun-Kyu;Heo, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.964-972
    • /
    • 2001
  • The kinetics of copper ion biosorption by Pseudomonas stutzeri cells immobilized in alginate was investigated. During the first few minutes of the metal uptake, the copper biosorption was rapid and then became progressively slower until an equilibium was rapid, and then became progressively slower until an equilibrium was reached. At a biomass concentration of 100g/l, the copper biosorption reaction reached approximately 90% of the equilibrium position within 30 min. A Freundich-type adsorption isotherm model was constructed based on kinetics with different amounts of biomass. When using this model, the experimental values only agreed well with the predicted values in a solution containing less than 200 mg/l Cu(II). Desorption of the bound copper ions was achieved using electrolytic solutions of HCl, $H_2SO_4$, EDTA, and NTA (0.1 or 0.5 M). Metal desorption with 0.1 M NTA allowed the reuse of the biosorbent for at least ten consecutive biosorption/desorption cycles, without an apparent decrease in its metal biosorption capability. A packed-bed column reactor of the immobilized biomass removed approximately 95% of the metal in the first 30 liter of wastewater [containing 100 mg/l Cu(II)] delivered at a rate of 20 L/day, and, thereafter, the rate gradually decreased.

  • PDF