• Title/Summary/Keyword: Isotherm adsorption

Search Result 899, Processing Time 0.03 seconds

Studies on Methanolic Extract of Lepidagathis keralensis as Green Corrosion Inhibitor for Mild Steel in 1M HCl

  • Leena, Palakkal;Zeinul Hukuman, N.H.;Biju, A.R.;Jisha, Mullapally
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.231-243
    • /
    • 2019
  • The methanolic extracts of the leaves and stem of the plant Lepidagathis keralensis were evaluated for anticorrosion behavior against mild steel in 1M HCl. Corrosion inhibition studies were done by gravimetric method, electrochemical impedance spectroscopy and potentiodynamic polarization methods. Surface morphology of mild steel in the presence and absence of inhibitors were studied using SEM analysis. UV-Vis studies were also done to evaluate the mechanism of inhibition. Both the extracts showed good inhibition efficiency which increased with increase in concentration of the inhibitor and decreased with increase in temperature. The mechanism of inhibition was explained by adsorption which obeyed Langmuir adsorption isotherm. Thermodynamic calculations revealed a combination of both physisorption and chemisorption of the inhibitor on the surface of mild steel. The extracts behaved as mixed type inhibitors as determined by polarization studies. Quantum chemical studies on Phenoxyethene, one of the major components in the leaf extract of the plant was also carried out to support the experimental results.

Synthesis and characterization of α-mangostin imprinted polymers and its application for solid phase extraction

  • Zakia, Neena;Zulfikar, Muhammad A.;Amran, Muhammad B.
    • Advances in materials Research
    • /
    • v.9 no.4
    • /
    • pp.251-263
    • /
    • 2020
  • α-mangostin imprinted polymers have been synthesized by a non-covalent imprinting approach with α-mangostin as a template molecule. The α-mangostin molecularly imprinted polymers (MIPs) prepared by radical polymerization using methacrylic acid, ethlylene glycol dimethacrylate, benzoyl peroxide, and acetonitrile, as a monomer, crosslinker, initiator, and porogen, respectively. The template was removed by using methanol:acetic acid 90:10 (v/v). The physical characteristics of the polymers were investigated by Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The rebinding studies were carried out by batch methods. The results exhibited that the MIPs was able to adsorb the α-mangostin at pH 2 and the contact time of 180 min. The kinetic adsorption data of α-mangostin performed the pseudo-second order model and followed the Langmuir isotherm model with the adsorption capacity of 16.19 mg·g-1. MIPs applied as a sorbent material in solid-phase extraction, namely molecularly imprinted solid-phase extraction (MISPE) and it shows the ability for enrichment and clean-up of α-mangostin from the complex matrix in medicinal herbal product and crude extract of mangosteen (Garcinia mangostana L.) pericarp. Both samples, respectively, which were spiked with α-mangostin gives recovery more than 90% after through by MISPE in all concentration ranges.

Evaluation of the Inhibitive Performance of Cyperus Conglomeratus Leaves Extract as a Green Corrosion Inhibitor on Mild Steel XC70 in Acid Medium

  • Belkis, Guessoum;Abdelkader, Hadj Seyd;Oumelkheir, Rahim
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.171-183
    • /
    • 2022
  • The performance and inhibitory action of the aqueous extract of Cyperus Conglomeratus's leaves against corrosion of XC70 steel in a 1M HCl acid medium are studied by the determination of the weight loss, the potentiodynamic polarization curves analysis, and electrochemical impedance measurements (electrochemical techniques). The corrosion inhibitory efficiency of XC70 steel increases with the increasing concentration of the green inhibitor, however, the corrosion rate of the steel decreases. Weight loss measurements show that the maximum percentage corrosion inhibition efficiency is approximately 61.86%, while the analysis of the mixed character polarization curves shows that the inhibitor could achieve an inhibition efficiency of 86.96%. The electrochemical impedance study confirmed that the value of the charge transfer resistance (Rct) increases and the value of the double layer capacity (Cdl) decreases with increasing concentration of the aqueous extract of Cyperus Conglomeratus's leaves, thus increasing the inhibition efficiency. The study showed that this aqueous extract acts by adsorption on the metal surface; this adsorption follows the Langmuir isotherm. This research work showed that Cyperus Conglomeratus leaves extract acts as an effective and eco-friendly inhibitor on mild steel in an acid medium.

Simultaneous extraction of organic and inorganic compounds using molecularly/ion imprinted polymer

  • Yelin Lee;Hyeyoung Jung;Soomi Park;Sunyoung Bae
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.295-305
    • /
    • 2024
  • 5-Hydroxymethyl-2-furaldehyde (5-HMF) is considered one of the main quality indexes of various food products. Its metabolism in humans can potentially lead to carcinogenic compounds. Metallic ions such as Zn, Mg, Mn, and Fe have been reported to enhance 5-HMF formation. Recently, studies on adsorbents that can extract specific organic and inorganic substances with one adsorbent have been conducted. However, simultaneous analysis of organic and inorganic materials typically requires distinct pre-treatment and analytical methods, which increase a lot of labor and cost. In this study, hybrid imprinted polymer (HIP) by mixing 5-HMF imprinted polymer (FIP) and zinc ion imprinted polymer (ZIIP) were generated to extract two analytes, Zn ion and 5-HMF, simultaneously. Physicochemical characterization of HIP was conducted by Fourier-transform infrared spectroscopy, scanning electron microscopy, and sorption tests. Extraction conditions including adsorbent mixing ratio, adsorbate mixing range, and equilibrium time were optimized. Freundlich adsorption model was as the best-fitting isotherm model to elucidate the adsorption mechanism. Affinity of Zn ion and 5-HMF on HIP was superior to non-HIP. In conclusion, HIP showed reasonable feasibility that could be used as an adsorbent to be used for simultaneous extraction of organic and inorganic compounds present in the sample.

Removal of Synthetic Heavy Metal ($Cr^{6+}$, $Cu^{2+}$, $As^{3+}$, $Pb^{2+}$) from Water Using Red Mud and Lime Stone (적니와 석회석을 이용한 혼합 중금속($Cr^{6+}$, $Cu^{2+}$, $As^{3+}$, $Pb^{2+}$)의 제거)

  • Kang, Ku;Park, Seong-Jik;Shin, Woo-Seok;Um, Byung-Hwan;Kim, Young-Kee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.566-573
    • /
    • 2012
  • This study examined the removal rate of heavy metals from synthetic control water using red mud and lime stone. Overall, the percent of absorption obtained in this study for the red mud treatment was 94.0% ($Pb^{2+}$), 67.1% ($As^{3+}$), 37.5% ($Cu^{2+}$), and 36.6% ($Cr^{6+}$), while that of lime stone was $Pb^{2+}$ (30.8%), $Cu^{2+}$ (16.5%), $Cr^{6+}$ (11.5%), and $As^{3+}$ (8.9%). The kinetic data presented that the slow course of adsorption follows the Pseudo first and second order models, the equilibriuim adsorption of $Cr^{6+}$ and $Pb^{2+}$ obeys Freundlich isotherm model, while the adsorption of $Cu^{2+}$ obeys only Langmuir model. The results also showed that adsorption rate slightly increased with increasing pH from 5 to 9. Interestingly, this trend is similar to results obtained as function of loading amount of red mud. Meanwhile, an unit adsorption rate was slightly decreased. For lime stone, it did not much change in adsorption as function of treatment amount. Consequently, it was concluded that the absorbents can be successfully used the removal of the heavy metals from the aqueous solutions.

Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste (IE911 (crystalline silicotitanate) 의한 고방사성해수폐액으로부터 Cs의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • This study was performed on the removal of Cs, one of the main high- radioactive nuclides contained in the high-radioactive seawater waste (HSW), by adsorption with IE911 (crystalline silicotitanate type). For the effective removal of Cs and the minimization of secondary solid waste generation, adsorption of Cs by IE911 (hereafter denoted as IE911-Cs) was effective to carry out in the m/V (ratio of absorbent weight to solution volume) ratio of 2.5 g/L, and the adsorption time of 1 hour. In these conditions, Cs and Sr were adsorbed about 99% and less than 5%, respectively. IE911-Cs could be also expressed as a Langmuir isotherm and a pseudo-second order rate equation. The adsorption rate constants (k2) were decreased with increasing initial Cs concentrations and particle sizes, and increased with increasing ratios of m/V, solution temperatures and agitation speeds. The activation energy of IE911-Cs was about 79.9 kJ/mol. It was suggested that IE911-Cs was dominated by a chemical adsorption having a strong bonding form. From the negative values of Gibbs free energy and enthalpy, it was indicated that the reaction of IE911-Cs was a forward, exothermic and relatively active at lower temperatures. Additionally, the negative entropy values were seen that the adsorbed Cs was evenly distributed on the IE911.

Application of Iron Sand as Adsorbent for the Removal of Heavy Metal (중금속 제거용 흡착제로서의 철광사 적용)

  • Yang, Jae-Kyu;Yu, Mok-Ryun;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1180-1185
    • /
    • 2005
  • Iron sand, having iron as a major component, was applied in the treatment of synthetic wastewater containing Cu(II) or Pb(II). To investigate the stability of iron sand at acidic condition, dissolution of Fe and Al was studied with variation of solution pH ranging from 2 to 4.5. Iron concentration in the extracted solution was below the emission regulation of wastewater even at a strong acidic condition, pH 2. Although an important concentration of aluminum was extracted at pH 2, the dissolution greatly decreased above pH 3. This stability test suggests that application of iron sand has little problem in the treatment of wastewater above pH 3. Adsorption capacity of Cu(II) and Pb(II) onto iron sand was investigated in a batch and a column test. In case of Cu(II), rapid adsorption was noted, showing 50% removal within 2 hrs, and then reached a near complete equilibrium after 24 hrs. Adsorption was favorable at higher pH in each metal ion and showed a near complete removal above pH 6, indicating a typical cationic-type adsorption. From the adsorption isotherm obtained with variation of the concentration of each metal ion, the maximum adsorption capacity of Cu(II) and Pb(II) was identified as 2,170 mg/kg 및 3,450 mg/kg, respectively.

Effect of Immobilization Method in the Biosorption and Desorption of Lead by Algae, Chlorella pyrenoidosa (Chlorella pyrenoidosa에 의한 납 흡.탈착시 고정화 방법의 영향)

  • Shin, Taek-Soo;Lim, Byung-Seo;Lee, Sang-Woo;Rhu, Kwon-Gul;Jeong, Seon-Ki;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.663-672
    • /
    • 2009
  • In this studies, the adsorption test using Chlorella pyrenoidosa was conducted to examine the effect of Pb adsorption according to various immobilized methods such as Ca-alginate, K-carrageenan, and Polyacrylamide. From the results, the duration to need to reach adsorption equilibrium was delayed according to the immobilization. And, the higher adsorption capacity of immobilized Chlorella pyrenoidosa was represented in the higher concentration of Pb, the smaller amount of immobilizing agent, and the higher pH of solution. The maximum adsorption capacity of Pb was shown in the adsorption test using Chlorella pyrenoidosa immobilized with Ca-alginate even though it was sensitive pH. The adsorption results properly represented with Freundlich isotherm equations. And, pseudo second-order chemisorption kinetic rate equation was applicable to all the biosorption data over the entire time range. The FT-IR analysis showed that the mechanism involved in biosorption of Pb by Chlorella pyrenoidosa was mainly attributed to Pb binding of carbo-acid and amide group. Adsorbed Pb on immobilized Chlorella prenoidosa was easily desorbed in the higher concentration of desorbents(NTA, HCl, EDTA, $H_2SO_4,\;Na_2CO_3$). Among the several desorbents, NTA showed the maximum desoption capacities of Pb from Chlorella pyrenoidosa immobilized with Ca-alginate and K-carrageenan and EDTA was the most effective in Chlorella pyrenoidosa immobilized with polyacrylamide. The desoprtion efficiency in the optimum condition was 90.0, 83.0, and 80.0%, respectively.

Effects of Ionic strength and Anion species on Heavy Metal Adsorption by Zeolite (Ionic Strength 및 공존(共存) 음(陰)Ion이 Zeolite에 의(依)한 중금속(重金屬)의 흡착(吸着)에 미치는 영향(影響))

  • Lee, Jyung-Jae;Park, Byoung-Yoon;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 1988
  • It is important to assess the effects of ionic strength and type of anions when studying the adsorption of heavy metals on zeolite because the background salt may complex with heavy metals and compete for adsorption sites. This experiment was carried out to determine the effect of ionic strength and anion species($Cl^-$, $SO^{2-}\;_4$, and $ClO^-\;_4$) on heavy metal adsorption. Heavy metal adsorption by zeolite from solutions in the range of 10 to 50ppm was studied in the presence of NaCl, $Na_2SO_4$ and $NaClO_4$, with different concentrations. The ionic strength ranged from 0.01 to 1.00. Adsorption of heavy metal cations could be described by the Freundlich isotherm equation. Increasing the ionic strength of equilibrium solutions, the amounts of heavy metal adsorbed on the zeolite surfaces decreased in all three of the anion systems. This fact could be attributed to the competition of background salt cation and the decrease in initial activity of heavy metal cations. In the presence of Cl anion, less adsorption resulted than in the presence of $SO_4$ or $ClO_4$ anions of the same ionic strength, indicating the presence of uncharged and negatively charged complexes of heavy metal with Cl ligands.

  • PDF

Adsorption Features of Lead Ion on Waste Undaria pinnatifida (폐기된 해조류를 이용한 납 이온의 흡착 특성)

  • Seo Myung-Soon;Kim Dong-Su
    • Resources Recycling
    • /
    • v.13 no.4
    • /
    • pp.23-31
    • /
    • 2004
  • Basic studies have been conducted regarding the attempt of the utilization of waste Undaria pinnatifida as an adsorbent for the adsorption treatment of lead-containing wastewater. Undaria pinnatifida was found to be chiefly composed of hyo-carbonaceous compounds and have a fairly high specific surface area, which suggesting the possibility of its application as a Potential adsorbent. The electrokinetic Potential of Undaria pinnatifida particles was observed to be negatively highest at around pH 8 and the fact that its electrokinetic potentials are negative at the whole pH range supported it might be an efficient adsorbent especially for cationic adsorbates. Under the experimental conditions, $Pb^{2+}$ was found to mostly adsorb onto Undaria pinnatifida within a few minutes and reach the equilibrium in adsorption within ca. 30 minutes. The adsorption of $Pb^{2+}$ was exothermic and explained well by e Freundlich model. Acidic pretreatment of Undaria pinnatifida enhanced its adsorption capacity for $Pb^{2+}$ , however, the reverse was observed for alkaline pretreatment. The formation of organometallic complex between $Pb^{2+}$ and some functional groups on the surface of Undaria pinnatifida was considered to be one of the main drives for adsorption. Finally the adsorbability of$ Pb^{2+}$ was examined to be rather affected by several solution features such as the coexistence of other adsorbate, the variation of ionic strength, and the concentration of complexing agent.