• Title/Summary/Keyword: Isopropyl fluoroformate

Search Result 2, Processing Time 0.015 seconds

Correlation of the Rates of Solvolysis of Isopropyl Fluoroformate Using the Extended Grunwald-Winstein Equation

  • Lee, So-Hee;Rhu, Chan-Joo;Kyong, Jin-Burm;Kim, Dong-Kook;Dennis N. Kevill
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.657-661
    • /
    • 2007
  • The specific rates of solvolysis of isopropyl fluoroformate are well correlated using the extended Grunwald-Winstein equation, with a sensitivity (l ) to changes in solvent nucleophilicity (NT) and a sensitivity (m) to changes in solvent ionizing power (YCl). The sensitivities (l = 1.59 ± 0.16 and m = 0.80 ± 0.06) toward changes in solvent nucleophilicity and solvent ionizing power, and the kF/kCl values are very similar to those for solvolyses of n-octyl fluoroformate, suggesting that the addition step of an addition-elimination mechanism is rate-determining. For methanolysis, a solvent deuterium isotope effect of 2.53 is compatible with the incorporation of general-base catalysis into the substitution process. The large negative values for the entropies of activation are consistent with the bimolecular nature of the proposed rate-determining step. These observations are also compared with those previously reported for the corresponding chloroformate and fluoroformate esters.

Correlation of the Rates of Solvolysis of t-Butyl Fluoroformate Using the Extended Grunwald-Winstein Equation

  • Lee, Yong-Woo;Seong, Mi-Hye;Kyong, Jin Burm;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3366-3370
    • /
    • 2010
  • The specific rates of solvolysis of t-butyl fluoroformate (1) have been measured at $40.0^{\circ}C$ in 21 pure and binary solvents. These give a satisfactory correlation over the full range of solvents when the extended Grunwald-Winstein equation, with incorporation of the solvent nucleophilicity and the solvent ionizing power, is applied. The actual values are very similar to those obtained in earlier studies of the solvolyses of isopropyl chloroformate and ethyl chlorothioformate in the more ionizing and least nucleophilic solvents, which are believed to proceed by an ionization pathway. The small negative values for the entropies of activation are consistent with the ionization nature of the proposed rate-determining step. These observations are also compared with those previously reported for the corresponding primary and secondary alkyl haloformate esters.