• Title/Summary/Keyword: Isomorphic Neural Network

Search Result 2, Processing Time 0.017 seconds

New Usage of SOM for Genetic Algorithm (유전 알고리즘에서의 자기 조직화 신경망의 활용)

  • Kim, Jung-Hwan;Moon, Byung-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.440-448
    • /
    • 2006
  • Self-Organizing Map (SOM) is an unsupervised learning neural network and it is used for preserving the structural relationships in the data without prior knowledge. SOM has been applied in the study of complex problems such as vector quantization, combinatorial optimization, and pattern recognition. This paper proposes a new usage of SOM as a tool for schema transformation hoping to achieve more efficient genetic process. Every offspring is transformed into an isomorphic neural network with more desirable shape for genetic search. This helps genes with strong epistasis to stay close together in the chromosome. Experimental results showed considerable improvement over previous results.

Bankruptcy Prediction using Fuzzy Neural Networks (퍼지신경망을 이용한 기업부도예측)

  • 김경재;한인구
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.135-147
    • /
    • 2001
  • This study proposes bankruptcy prediction model using fuzzy neural networks. Neural networks offer preeminent learning ability but they are often confronted with the inconsistent and unpredictable performance for noisy financial data. The existence of continuous data and large amounts of records may pose a challenging task to explicit concepts extraction from the raw data due to the huge data space determined by continuous input variables. The attempt to solve this problem is to transform each input variable in a way which may make it easier fur neural network to develop a predictive relationship. One of the methods selected for this is to map each continuous input variable to a series of overlapping fuzzy sets. Appropriately transforming each of the inputs into overlapping fuzzy membership sets provides an isomorphic mapping of the data to properly constructed membership values, and as such, no information is lost. In addition, it is easier far neural network to identify and model high-order interactions when the data is transformed in this way. Experimental results show that fuzzy neural network outperforms conventional neural network for the prediction of corporate bankruptcy.

  • PDF