• Title/Summary/Keyword: Isometric feature mapping

Search Result 3, Processing Time 0.016 seconds

Semi-fragile Watermarking Scheme for H.264/AVC Video Content Authentication Based on Manifold Feature

  • Ling, Chen;Ur-Rehman, Obaid;Zhang, Wenjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4568-4587
    • /
    • 2014
  • Authentication of videos and images based on the content is becoming an important problem in information security. Unfortunately, previous studies lack the consideration of Kerckhoffs's principle in order to achieve this (i.e., a cryptosystem should be secure even if everything about the system, except the key, is public knowledge). In this paper, a solution to the problem of finding a relationship between a frame's index and its content is proposed based on the creative utilization of a robust manifold feature. The proposed solution is based on a novel semi-fragile watermarking scheme for H.264/AVC video content authentication. At first, the input I-frame is partitioned for feature extraction and watermark embedding. This is followed by the temporal feature extraction using the Isometric Mapping algorithm. The frame index is included in the feature to produce the temporal watermark. In order to improve security, the spatial watermark will be encrypted together with the temporal watermark. Finally, the resultant watermark is embedded into the Discrete Cosine Transform coefficients in the diagonal positions. At the receiver side, after watermark extraction and decryption, temporal tampering is detected through a mismatch between the frame index extracted from the temporal watermark and the observed frame index. Next, the feature is regenerate through temporal feature regeneration, and compared with the extracted feature. It is judged through the comparison whether the extracted temporal watermark is similar to that of the original watermarked video. Additionally, for spatial authentication, the tampered areas are located via the comparison between extracted and regenerated spatial features. Experimental results show that the proposed method is sensitive to intentional malicious attacks and modifications, whereas it is robust to legitimate manipulations, such as certain level of lossy compression, channel noise, Gaussian filtering and brightness adjustment. Through a comparison between the extracted frame index and the current frame index, the temporal tempering is identified. With the proposed scheme, a solution to the Kerckhoffs's principle problem is specified.

Maximum Simplex Volume based Landmark Selection for Isomap (최대 부피 Simplex 기반의 Isomap을 위한 랜드마크 추출)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.509-516
    • /
    • 2013
  • Since traditional linear feature extraction methods are unable to handle nonlinear characteristics often exhibited in hyperspectral imagery, nonlinear feature extraction, also known as manifold learning, is receiving increased attention in hyperspectral remote sensing society as well as other community. A most widely used manifold Isomap is generally promising good results in classification and spectral unmixing tasks, but significantly high computational overhead is problematic, especially for large scale remotely sensed data. A small subset of distinguishing points, referred to as landmarks, is proposed as a solution. This study proposes a new robust and controllable landmark selection method based on the maximum volume of the simplex spanned by landmarks. The experiments are conducted to compare classification accuracies with standard deviation according to sampling methods, the number of landmarks, and processing time. The proposed method could employ both classification accuracy and computational efficiency.

Comparison of Four Different Ordination Methods for Patterning Water Quality of Agricultural Reservoirs

  • Bae, Mi-Jung;Kwon, Yong-Su;Hwang, Soon-Jin;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.1-10
    • /
    • 2008
  • We patterned water quality of agricultural reservoirs according to the differences of six physico-chemical environmental factors (TN, TP, DO, BOD, COD, and SS) using four different ordination methods: Principal Components Analysis (PCA), Detrended Correspondence Analysis (DCA), Nonmetric Multidimensional Scaling (NMS), and Isometric Feature Mapping (Isomap). The data set was obtained from the water quality monitoring networks operated by the Ministry of Agriculture and Forestry and the Ministry of Environments. Chlorophyll-${\alpha}$ displayed the highest correlation with COD, followed by TP, BOD, SS, and TN (p<0.01), while negatively correlated with altitude and bank height of the reservoirs (p<0.01). Although four different ordination methods similarly patterned the reservoirs according to the gradient of nutrient concentration, PCA and NMS appeared to be the most efficient methods to pattern water quality of reservoirs based on the explanation power. Considering variable scores in the ordination map, the concentration of nutrients was positively correlated with Chl-${\alpha}$, while negatively correlated with altitude and bank height. These ordination methods may help to pattern agricultural reservoirs according to their water quality characteristics.