• Title/Summary/Keyword: Isomaltooligosaccharides

Search Result 33, Processing Time 0.022 seconds

Continuous Production of Isomaltooligosaccharides by Immobilized Transglucosidase in a Packed-bed Reactor (충진형반응기에서 고정화 Transglucosidase를 이용한 이소말토올리고당의 연속생산)

  • Ahn, Jang-Woo;Park, Kwan-Wha;Seo, Jin-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.110-117
    • /
    • 1998
  • A packed-bed reactor with immobilized transglucosidase (TG) was operated to test the possibility of continuous production of isomaltooligosaccharides (IMO) and the effect of concentration and feed rate of substrate solution on the production pattern as well as operational stability The pattern of formation of IMO was the same to the one of soluble TG. The concentrations of glucose and isomaltose produced by the packed-bed reactor were gradually decreased as the flow rates were increased regardless of the concentrations and kinds of maltose solution as substrate. Isomaltotriose showed the same tendency except 10% maltose solution. But the concentration of panose was increased and then decreased as the flow rates were increased. The maximum yield of IMO was 52.1% when 10% (w/v) solution was fed to the reactor at 2 mL./min feed rate. When each 20% and 30% (w/v) solution was respectively used at $0.5{\sim}1.0\;mL/min$, the maximum yield were $39.0{\sim}38.0%\;and\;12.1{\sim}14.2%$. The maximum yield was 36.3% at $0.5{\sim}1.0\;mL/min$ when a commercial maltose product containing 20% maltose was used. The reactor was stably operated at $55^{\circ}C$. 85% and 65% of initial activity was maintained for 144 hours and 288 hours of operation, respectively. A reactor analysis strongly an immobilized TG system could apply to continuous production of IMO.

  • PDF

Synbiotic Synthesis of Oligosaccharides During Milk Fermentation by Addition of Leuconostoc Starter and Sugars

  • Seo, Dong-Mi;Kim, So-Young;Eom, Hyun-Ju;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1758-1764
    • /
    • 2007
  • Synthesis of oligosaccharides during milk fermentation was attempted by inoculating Leuconostoc citreum with Lactobacillus casei, Lb. delbrueckii subsp. bulgaricus, and Streptococcus thermophilus as starters. Dextransucrase of Ln. citreum worked as a catalyst for the transglycosylation reaction of sugars; sucrose was added as the glucose donor, and lactose or maltose acted as the acceptor compound for the reaction. When 4% sucrose was added in milk, glucosyl-lactose was synthesized (about 1%, w/v) after 1-2 days of fermentation at 15 or $25^{\circ}C$. Alternatively, when sucrose and maltose (2% each, w/v) were added, panose (about 1 %, w/v) and other isomaltooligosaccharides were made in a day at $15-35^{\circ}C$. Growth patterns of lactobacilli and streptococci starters were not affected by the coculture of leuconostoc starter, but the rate of acid synthesis was slightly slowed at every temperature. Addition of sugars in milk did not give any adverse effect on the lactate fermentation. Accordingly, the use of leuconostoc starter and addition of sugars in milk allowed the production of oligosaccharides-containing fermented milk, and application of this method will facilitate the extensive development of synbiotic lactate foods.

Effects of Graded Levels of Isomaltooligosaccharides on the Performance, Immune Function and Intestinal Status of Weaned Pigs

  • Wang, X.X.;Song, P.X.;Wu, H.;Xue, J.X.;Zhong, X.;Zhang, L.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.250-256
    • /
    • 2016
  • The objective of this study was to investigate the effects of graded levels of isomaltooligosaccharides (IMO) on the performance, immune function and intestinal microflora and intestinal mucosal morphology of weaned pigs. In a 28-day experiment, one hundred eighty, twenty eight-day-old, crossbred (Duroc${\times}$Large White${\times}$Landrace), weaned pigs, with an initial body weight of $8.19{\pm}1.45kg$, were fed either an unsupplemented corn-soybean meal based diet or similar diets supplemented with 0.2%, 0.4%, 0.6%, or 0.8% IMO added at the expense of corn. Each treatment was replicated six times with six pigs (three barrows and three gilts) per pen. From day 0 to 14, weight gain was linearly increased (p<0.05), while gain:feed (p<0.05) was linearly improved and diarrhea rate (p = 0.05) linearly declined as the IMO level increased. On d 14, the level of the immunoglobulins IgA, IgM, and IgG in the serum of pigs were linearly increased (p<0.05) with increasing IMO supplementation. Interleukin-6 (IL-6) was linearly (p<0.05) and quadratically (p<0.05) decreased as IMO intake increased. From day 15 to 28, there was a trend for weight gain to be linearly increased, and IL-2 was linearly (p<0.05) increased as IMO supplementation increased on d 28. Over the entire experiment, weight gain was linearly increased (p<0.05), while gain:feed (p<0.05) was linearly improved and diarrhea rate (p<0.05) was linearly decreased as the IMO level increased. Supplementation with IMO had no effect on the intestinal microflora of pigs in the ileum and cecum of pigs, as well as the villus height and crypt depth in the ileum and jejunum (p>0.05). These results indicate that dietary inclusion of IMO increases weight gain, gain:feed and enhanced the immune status of pigs, and could be a valuable feed additive for use in weaned pigs, particularly during the period immediately after weaning.

Optimum Conditions of Enzymatic Reactions for Production of Isomaltooligosaccharides from Rice Flour (쌀가루로부터 이소말토올리고당 제조를 위한 효소반응 최적 조건)

  • Park, Ji-in;Shin, Jiyoung;Yang, Ji-young
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2020
  • This study investigated the optimal conditions of enzymatic reaction for production of isomaltooligosaccharides (IMO) using rice flour. To manufacture IMO, commercial enzymes (Termamyl 2X, Maltogenase L, Promozyme D2, Fungamyl 800L and Transglucosidase L) were used. The sugar composition and amount of IMO were examined by HPLC with charged aerosol detector (HPLC-CAD) in each manufacturing process. Liquefaction reaction was performed according to different Termamyl 2X concentrations (0.025%, 0.05%, 0.075%, 0.1%) and reaction times (1 h, 2 h). As a result, the reducing sugar content was the highest at 138.26 g/L when 0.075% Termamyl 2X was added for 2 hours. In order to optimize simultaneous saccharification and transglucosylation, experiments on enzyme selection, enzyme concentration and enzyme reaction time were conducted. Reaction with 0.0015% Maltogenase L, 0.05-0.1% Promozyme D2 and 0.1% Tansglucosidase L was effective in decreasing glucose content and increasing content of IMO with a high degree of polymerization. A change in sugar content was observed every 6 hours to determine the optimal reaction time, and the highest IMO was produced after 36 hours of reaction (75.36 g/L). The IMO prepared under optimal conditions showed isomaltose, 35.11 g/L; panose, 11.97 g/L; isomaltotriose, 19.95 g/L; isomaltotetraose, 7.46 g/L; isomaltopentaose, 1.05 g/L at 18 brix and the ratio of IMO in the total sugar was 56.37%.

Changes in isomaltooligosaccharides during fermentation of Makgeolli (막걸리 발효 중 이소말토올리고당의 변화)

  • Noh, Dong-Hyun;Jeong, Seok-Tae;Park, Boram;Kim, Yong-suk;Lim, Bora
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.351-361
    • /
    • 2022
  • This study aimed to investigate the differences in the isomaltooligosaccharides present during Makgeolli production according to the type of Nuruk used, fermentation period, and presence of microorganisms. Makgeolli was fermented for 15 days using three kinds of Nuruk (Soyul, Sansung, and Jinju) with and without microbial growth inhibitors. Isomaltooligosaccharide contents were analyzed using high performance anion exchange chromatography. The most abundant isomaltooligosaccharide was panose, which was highest in Makgeolli produced using Soyul Nuruk (SH) on day 6 (24.7 mM), followed by Makgeolli prepared using Sansung Nuruk (SS) on day 2 (18.2 mM) and Makgeolli prepared using Jinju Nuruk (JJ) on day 3 (10.8 mM). Isomaltotriose and isomaltotetraose, which were generated in the control, were not detected when microbial growth was suppressed. Based on these results, isomaltooligosaccharide production is affected more by the enzymes produced by microorganisms during Makgeolli fermentation than by Nuruk itself.

Characterization of Dextran Produced by L. mesenteroides ATCC 13146

  • Yoo, Sun-Kyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.358-362
    • /
    • 2005
  • High molecular weight dextran (39% alcohol, v/v), less soluble dextran, eluted from this column between T 500 and T 2000, a commercial linear dextran, Soluble dextran (45% alcohol, v/v) eluted at between T 70 and T 150 dextran. The molecular weight average of total dextran (50% alcohol, v/v) was between 150,000 to 500,000. A few oligosaccharides were detected from hydrolyzates of less soluble dextran. The hydrolyzates of soluble dextran were a family of DP 1 to 6 isomaltooligosaccharides. Compounds greater than DP 4 were branched isomaltooligosaacharides.

  • PDF

Development and Verification of an Optimum Composition Model for a Synbiotic Fermented Milk Using Sequential Quadratic Programming Techniques

  • Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1490-1495
    • /
    • 2006
  • The purpose of this research was to develop an optimum composition model for a new synbiotic fermented dairy product with high probiotic cell counts, and to experimentally verify this model. The optimum composition model indicated the growth promoter ratio that could provide the highest growth rate for probiotics in this fermented product. Different levels of growth promoters were first blended with milk to improve the growth rates of probiotics, and the optimum composition model was determined. The probiotic viabilities and chemical properties were analyzed for the samples made using the optimal formula. The optimal combination of the growth promoters for the synbiotic fermented milk product was 1.12% peptides, 3% fructooligosaccharides (FOS), and 1.87% isomaltooligosaccharides (IMO). A product manufactured according to the formula of the optimum model was analyzed, showing that the model was effective in improving the viability of both Lactobacillus spp. and Bifidobacterium spp.

Comparison of the Chicken Large Intestine to the Large Intestine of Pigs and the Rumen of Cows (닭의 대장을 돼지의 대장이나 소의 제 1위 (Rumen)와 비교 연구)

  • Nahm K.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.1
    • /
    • pp.81-95
    • /
    • 2006
  • The large intestine of the chicken differs both anatomically and physiologically from the pig's large intestine and the men of the cow. The chicken's large intestine is less developed than the pig's large intestine or the cow's lumen. This paper summaries these differences. The chicken's large intestine contains a microbiological population similar to that found in the rumen. The chicken's caeca especially contains a large number of microorganisms, but this population varies according to age, fred, maturity, antibiotic use and etc.. Protein is an essential nutrient for the formation of intestinal microvilli. A study showed that the length of the small intestine was 63 % of the total gastrointestinal tract (GIT) length, while caecum was 8.1 %, and the colon and rectum were 4.6 %. The establishment of the microbial population of the small intestine occurs earlier than that of the caeca, but the identity of approximately 90 % of microbial population of the chicken GIT is hon. Recent studies have shown that energy, volatile fatty acid (VFA) and electrolytes that are found in the large intestine may be absorbed to a certain degree. The chicken small intestine is the primary location for digestion with a variety of enzymes being secreted here. Much research is being conducted into the digestion of sucrose thermal oligosaccharide caramel (STOP), fructooligosaccharides (FOS), mannanoligosaccharide (MOS), galactooligosaccharides (GOS) and isomalto-oligosaccharides (IMO) in the chicken caeca and large intestine. Excessive fibre content in the feed has detrimental effects, but proper fibre supplementation to chicken diets can improve the length and capacity of the small intestine.

Effect of O1igosaccharides on Mannitol Accumulation during the Fermentation of Kimchis (김치발효 중 Mannitol 생성에 미치는 올리고당류의 영향)

  • 강선철;윤종원노택욱
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.181-185
    • /
    • 1996
  • A considerable amounts of mannitol were accumulated during the fermentation of Kimchis. When several oligosaccharide including fructo-, soybean-, and isomaltooligosaccharides were added during the preparation of Kimchi as beneficial ingredient respectively, fructooligosaccharides (at $25^{\circ}C$) and soybean-oligosaccharides (at $35^{\circ}C$) significantly increased the amounts of mannitol accumulation, while isomalto-oligosaccharides exerted no effect at all fermentation conditions examined. This result were caused by no appearance of microorganisms which have the capability of utilizing isomalto-oligosacsharides during fermentation period. Isomalto-oligosaccharides can be recommended as an effective ingredient of Kimchis because both oligosaccharides and mannitol that have favorable functionalities were simultaneously contained. However, so as to enhance the cooling taste of Kimchis by increasing the content of mannitol, fructo- and soybean-oligosaccharides are rather favorable.

  • PDF

Optimized Substrate Concentrations for Production of Long-Chain Isomaltooligosaccharides Using Dextransucrase of Leuconostoc mesenteroides B-512F

  • Lee, Min-Sung;Cho, Seung-Kee;Eom, Hyun-Ju;Kim, So-Young;Kim, Tae-Jip;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1141-1145
    • /
    • 2008
  • Isomaltooligosaccharide (IMO) is a promising dietary component with prebiotic effect, and the long-chain IMOs are preferred to short chain ones owing to the longer persistence in the colon. To establish the optimal process for synthesis of long-chain IMOs, we systematically examined the reaction condition of dextransucrase of Leuconostoc mesenteroides B-512F by changing the ratio of sucrose to maltose (varying as 1:4, 1:2, 1:1, and 2:1) and amount of each sugar (from 2% to 20%). As a result, a ratio of 2:1 (sucrose to maltose, 10:5% or 20:10%, w/v) was determined as an optimal condition for long-chain IMO synthesis (DP3-DP9) with relatively higher yields (70-90%, respectively).