• Title/Summary/Keyword: Isolation-heat Paint

Search Result 4, Processing Time 0.016 seconds

A Study on the Change in Energy Performance of the Domestic Building by the Isolation-heat Paint (차열도료 적용을 통한 국내 건축물의 에너지 성능 변화에 관한 연구)

  • Choi, Doo-Sung;Chun, Hung-Chan;Cho, Kyun-Hyong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.33-40
    • /
    • 2011
  • In this study, it is quantitatively analyzed for thermal Characteristics of isolation-heat paint which has been supplied to a domestic market through experiments and simulations. In the case of experiment using the container box, it shows 8% decrease on cooling energy consumption in a summer season, but shows increase on heating energy consumption. As a result, the analysis has found increase of energy consumption. As a result of holding simulations with meteorological data of domestic major cities, it shows an increase of energy consumption in domestic condition, and it is hard to expect an energy saving from the isolation-heat paint unless greater air-conditioning load.

Experimental Investigation of reducing the heat island effects using the newly developed isolation-heat paint and the heat exchanging paint (차열도료 적용에 의한 열섬현상 저감방안 시공사례 연구)

  • Kim, Dong-Woo;Bahng, Keuk-Ho;Lee, Deuk-Sun;Kim, Hae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.87-96
    • /
    • 2009
  • This study practically investigated the effects of the newly developed isolation-heat paints applied into the buildings and the roads in Japan. After 1970 since the gravitation of population toward the cities has got more deeply involved due to the development of industries, the increased paved roads and the heats come out from the industrial chimneys cause the heat island effect. The dark colored paints on the roads and the stagnations of air blocked by large buildings turned out to be also the main reasons for the heat island effect. Therefore, in order to cool down the heats accumulated in buildings and roads, the developed isolation-heat paints applied into several different regions and the decreased temperatures and heats were accurately measured and reported.

  • PDF

Preparation of Fe2O3 Coated on Mica for Infrared Reflectance Red Pigment and Thermal Property of Its Isolation-Heat Paint (Fe2O3가 코팅된 판상 mica의 적외선 반사용 적색안료 제조 및 차열도료의 열특성)

  • Lee, Hyun Jin;Kim, Dae Sung;Lee, Seung-Ho;Lim, Hyung Mi;Choi, Byung-Ki;Kang, Kwang-Jung;Jeong, Jae Il;Cho, Kum-Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • $Fe_2O_3$ coated plate mica($Fe_2O_3$/mica) for infrared reflectance red pigment was prepared under hydrothermal treatment. $Fe_2O_3$ was perfectly coated on mica via the difference of surface charge between $Fe_2O_3$ and mica particles at pH 3. $Fe_2O_3$/mica was then calcined at $800^{\circ}C$ to stabilize the coated layer on mica. The infrared(IR) reflectance pigments were characterized by X-ray diffraction, FE-SEM, zeta potential, and a UV-Vis-NIR spectrophotometer. In particular, the CIE color coordinate and IR reflectance properties of $Fe_2O_3$/mica pigments were investigated in relation to the thickness variation of the $Fe_2O_3$ layer coated on mica of various lateral sizes. The isolation-heat red paints containing the pigments were prepared and optimized with a thinner, settling agent, and dispersant. Then, the films were made. The thermal property of isolation-heat on these films was observed through the relationship of the IR reflectance value, which was based on the variation of the $Fe_2O_3$ layer's thickness coated on mica and mica's lateral size as IR reflectance pigment. With an increase in IR reflectance on these films, the thermal property of isolation-heat was effectively enhanced.

Preparation of Fe4[Fe(CN)6]3 Coated on Mica or TiO2/Mica for Infrared Reflective Blue Pigments and Isolation-heat Properties of These Paints (Fe4[Fe(CN)6]3가 코팅된 Mica 또는 TiO2/Mica 적외선 반사용 청색안료 제조 및 이 도료의 차열 특성 평가)

  • Jung, Ha-Young;Kim, Dae Sung;Lee, Hyun-Jin;Lee, Seung-Ho;Lim, Hyung Mi;Choi, Byung-Ki;Kang, Kwang-Jung;Choi, Jin-Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.672-679
    • /
    • 2013
  • $Fe_4[Fe(CN)_6]_3$ coated on a mica or $TiO_2$/mica surface as infrared reflective blue pigment was prepared by a hydrothermal method. $Fe_4[Fe(CN)_6]_3$, used as coloring agent, was uniformly coated on mica or $TiO_2$/mica under the optimized condition of a 1.2 : 1 weight ratio between iron(III) chloride hexahydrate and potassium ferrocyanidetrihydrate at the initial pH level of 4.5 at $70^{\circ}C$. The infrared (IR)-reflective pigments were characterized by SEM, Zeta-potenial, FT-IR, and UV-VIS NIR spectrophotometry. Especially the CIE color coordinate and total solar reflectance(TSR) properties of the pigments were investigated in relation to variation of the coating and coated substrate thicknesses. Isolation-heat paint was prepared with 20 wt% blue pigments fully dispersed in acryl-urethane resin and several additives to coat the film uniformly. The films were also measured with CIE color coordinate, TSR, and the surface temperature was recorded by an isolation-heat measuring system. The pigments and films of $Fe_4[Fe(CN)_6]_3$ coated on mica and $TiO_2$/mica showed high TSR values compared with the TSR value of $Fe_4[Fe(CN)_6]_3$ itself. According to the increase of TSR value, the property of isolation-heat is effective. To realize the optimal blue color, we applied the the pigment to $TiO_2$ coated mica(TM(b)) which has blueish interference color. The pigment of $Fe_4[Fe(CN)_6]_3$ coated on TM(b) shows a strong blue color compared with that of $Fe_4[Fe(CN)_6]_3$ coated on $TiO_2$/Mmca(TM(w)), which has a whitish interference color.