• 제목/요약/키워드: Isolation

검색결과 9,150건 처리시간 0.036초

방진재를 이용한 대형구조물의 철도 진동에 관한 실험적 연구 (Experimental Study on Railway Vibration Isolation of a Large Structure using Isolation Materials)

  • 류봉조;이홍기;구경완
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1286-1292
    • /
    • 2011
  • The paper deals with the vibration isolation of a large structure using an experimental technology. In the case of vibration isolation for the vicinity of a subway or a railroad station, most of vibration isolation techniques using isolation materials with high isolation efficiency only, have been applied. Therefore, the quantitative evaluation and design technologies are required for a vibration isolation of large structures. In this study, firstly, vibration characteristics due to train or subway are analyzed. Secondly, the performance of existing vibration isolation materials such as precision isolation material, elastomer is estimated through the experiments. Thirdly, the performance of a tire isolation material and its frame is tested and evaluated. Finally, it is shown that tire isolation materials can be applied to the vibration isolation or vibration reduction of large structures.

Base Isolation System이 있는 건물의 지진하중에 대한 동적해석 (Semismic Analysis of Building Structures with Base Isolation System)

  • 이동근;이정석
    • 전산구조공학
    • /
    • 제3권1호
    • /
    • pp.71-81
    • /
    • 1990
  • Base isolation system은 구조물의 기초하부에 설치되며 지진에 의한 구조물의 피해를 감소시켜 준다. 지금까지 많은 공학들에 의해 여러가지 base isolation system이 개발되었으나 실용화된 것은 1970년대에 laminated rubber bearing(LR type)이 개발되고서부터 였다. 최근에는 laminated rubber bearing밑에 미끄럼판을 둔 새로운 base isolation system(SR type)이 개발되었다. 본 연구에서는 isolation system과 구조물의 여러가지 성질에 따른 isolation효과에 대한 연구를 수행하였다. 이 연구의 결과, isolaion system은 지진하중이 작용할 때 건물에 발생하는 피해를 상당히 감소시킴을 알 수 있으며, isolaion system의 주기가 길어짐에 따라 isolation효과는 증가함을 알 수 있다. 그리고 건물의 높이가 증가함에 따라 isolation효과는 줄어든다는 것을 알 수 있다. SR type isolation system이 있는 건물에 지진하중이 작용할 때, 건물내부에서 발생하는 가속도와 층간변위, 그리고 전체변위는 LR type의 경우보다 작으므로 보다 효율적이라는 것을 알 수 있다.

  • PDF

한옥의 면진기법 적용 방안에 대한 개념적 고찰 (Conceptual Application Schemes of Seismic Isolation Techniques to Hanok)

  • 박범수;김영민;허무원;이상현
    • 대한건축학회논문집:구조계
    • /
    • 제36권1호
    • /
    • pp.137-146
    • /
    • 2020
  • In this study, various application schemes of seismic isolation system which can be applied to Hanok have been studied by analyzing its structural characteristics under seismic load. Structural stability of Hanok is more required against seismic load as Hanok becomes long-spanned and multi-storied. To meet this goal, it becomes necessary to study more advanced technology such as seismic isolation design as well as seismic control design and seismic resistant design suitable to Hanok. Seismic isolation systems have been successfully applied to RC and steel structures to improve structural performance during earthquakes. Based on these previous study, we proposed four application schemes of seismic isolation design suitable for Hanok and analyzed their structural characteristics and applicability to Hanok in conceptual level based on its structural characteristics. The proposed four schemes are base isolation method, ground isolation method, roof isolation method and intermediate-story isolation method. The applicability of the proposed method was evaluated by performing boundary nonlinear dynamic analysis to the typical Hanok for the two types of isolation method, that is, ground isolation method and roof isolation method, and the results showed that the proposed methods produced good performance enough to be applied to Hanok.

돔 구조물의 지진응답 저감을 위한 중간 면진장치의 적용 (Application of Mid-story Isolation System for Seismic Response Reducing of Dome Structure)

  • 김기철;김수근;강주원
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.37-44
    • /
    • 2016
  • The seismic isolation system reduces the seismic vibration that is transmitted from foundation to upper structure. This seismic isolation system can be classified into base isolation and mid-story isolation by the installation location. In this study, the seismic behavior of dome structure with mid-story isolation is analyzed to verify the effect of seismic isolation. Mid-story isolation is more effective than base isolation to reduce the seismic responses of roof structure. Also, this isolation would be excellent in structural characteristics and construction.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

실험적 기법을 이용한 대형구조물 교통진동 차진기술 개발 (A Development of Vibration Isolation Technology for a Large Structure using Experimental Research)

  • 류봉조;이홍기;손성완;이규섭;한현희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.537-542
    • /
    • 2006
  • This paper deals with the vibration isolation techniques for a large structure using experimental research. In the case of vibration isolation for the vicinity of a subway or a railroad station, most of vibration isolation techniques using isolation materials with high isolation efficiency only, have been applied. Therefore, the quantitative evaluation and design technologies are required for a vibration isolation of large structures. In this study, firstly, vibration characteristics due to train or subway are analyzed. Secondly, the performance of existing vibration isolation materials such as precision isolation material, elastomer is estimated through the experiments. Thirdly the performance of tire isolation material and its frame is tested and evaluated.

  • PDF

하이브리드 중간층 지진격리시스템의 고층 건물 진동 제어 성능 평가 (Vibration Control Performance Evaluation of Hybrid Mid-Story Isolation System for a Tall Building)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.37-44
    • /
    • 2018
  • A base isolation system is widely used to reduce seismic responses of low-rise buildings. This system cannot be effectively applied to high-rise buildings because the initial stiffness of the high-rise building with the base isolation system maintains almost the same as the building without the base isolation system to set the yield shear force of the base isolation system larger than the design wind load. To solve this problem, the mid-story isolation system was proposed and applied to many buildings. The mid-story isolation system has two major objectives; first to reduce peak story drift and second to reduce peak drift of the isolation story. Usually, these two objectives are in conflict. In this study, a hybrid mid-story isolation system for a tall building is proposed. A MR (magnetorheological) damper was used to develop the hybrid mid-story isolation system. An existing building with mid-story isolation system, that is "Shiodome Sumitomo Building" a high rise building having a large atrium in the lower levels, was used for control performance evaluation of the hybrid mid-story isolation system. Fuzzy logic controller and genetic algorithm were used to develop the control algorithm for the hybrid mid-story isolation system. It can be seen from analytical results that the hybrid mid-story isolation system can provide better control performance than the ordinary mid-story isolation system and the design process developed in this study is useful for preliminary design of the hybrid mid-story isolation system for a tall building.

건물의 질량중심과 면진층의 강성중심 차이에 따른 면진효과 (Seismic Isolation Effects Due to the Difference Between the Center of Mass of the Building and the Center of Stiffness of Isolation Layer)

  • 허무원;천영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권5호
    • /
    • pp.107-115
    • /
    • 2014
  • 본 연구에서는 건물의 질량중심과 면진층의 강성중심 사이의 차이에 따른 면진효과에 대하여 살펴보았다. 면진기술은 면진층에 설치되는 면진장치의 성능에 크게 의존하는 기술이므로 면진장치 제작 후 전수검사를 통하여 면진장치의 수평강성을 검토하게 되어 있다. 하지만 면진장치 성능실험 시 각각의 면진장치의 품질기준은 건축기준에는 정해져 있지 않으며, 이로 인해 설계 시 적용된 강성과 실제 강성의 차이가 발생하여 면진층 상부 부재에 큰 문제를 야기할 수 있다. 연구결과, 최대응답변위의 차이는 크게 나타나지 않았으나 편심이 증가할수록 최대응답가속도, 층전단력 및 상부구조의 부재력은 크게 증가하여 일부 부재에서는 과도한 손상이 예상된다. 따라서 면진층은 실제 장치 제작 후 전수검사를 실시하여 반드시 설계된 의도대로 편심이 발생하지 않도록 장치를 재배치할 필요가 있으며, 가능하다면 건물의 질량중심과 강성중심의 차이는 동일하게 설계할 것을 추천한다.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

중.저층골조에서 면진주기 설정에 따른 면진효과 (Seismic Isolation Effects According to Set up the Isolation Period in the Medium and Low-rise Framed Building)

  • 천영수;허무원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.93-99
    • /
    • 2010
  • 본 논문에서는 상부구조에 있어서 보-기둥 강성비 변화에 따른 골조의 특성과 상부구조와 면진층 간의 진동주기비에 따른 면진효과를 분석해 보고, 상부골조의 주기와 목표 면진주기의 설정에 따라 면진효과가 어떻게 달라지는가에 대한 정보를 제공하여 향후 면진건물을 설계하기 위한 기본계획을 세우는데 있어서 필요한 기초 자료를 제공하고자 한다. 그 결과 건물골조의 경우 유효한 면진효과를 얻기 위해서는 최소한 상부구조의 고유진동주기 대비 2.5배 이상의 면진주기를 확보하고, 목표 면진주기를 2.0초 이상으로 설정하여 설계할 것을 추천한다.