• Title/Summary/Keyword: Isolated perfused rat liver

Search Result 26, Processing Time 0.022 seconds

Korean red ginseng prevents ethanol-induced hepatotoxicity in isolated perfused rat liver

  • Park, Hye-Min;Kim, Shang-Jin;Go, Hyeon-Kyu;Kim, Gi-Beum;Kim, Sung-Zoo;Kim, Jin-Shang;Kang, Hyung-Sub
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • Alcohol abuse and its medical and social consequences are a major health problem in many areas of the world. Korean red ginseng (KRG) has been traditionally used for the treatment of liver disease. This study was conducted to evaluate the hepatoprotective effects of KRG against hepatotoxicity in Sprague- Dawley rats treated with ethanol (EtOH). Administration of EtOH for 20 days induced significant changes in serum biochemical parameters (aspartate aminotransferase, alanine transaminase, and glucose) accompanied by histological changes in the liver tissue. Treatment with KRG prior to administration of EtOH inhibited the EtOH-induced biochemical and histological changes of the liver. In perfused rat livers, administration of EtOH caused an increase in lactate dehydrogenase (LDH) release into the perfusate and activated the pro-apoptotic Bax protein but inhibited the anti-apoptotic Bcl-2 protein. Pretreatment with KRG prior to administration of EtOH decreased the EtOH-induced LDH release and inhibition of Bcl-2 protein. These results suggest that KRG exerts anti-apoptotic effects and alleviated EtOH-induced liver injury in rats.

Effects of Dietary Lipid on Ethoxycoumarin Metabolism in Isolated Perfused Rat Liver (식이지질의 조절이 흰쥐 적출관류간장에 의한 Ethoxycoumarin 대사기능에 미치는 영향)

  • 이기완
    • Journal of Nutrition and Health
    • /
    • v.24 no.6
    • /
    • pp.485-495
    • /
    • 1991
  • Using isolated perfused livers obtained from rats that have been fed saturated and unsatu-rated fatty acid diets the rates of hepatic microsomal oxidation of 7-ethoxycoumarin(EC) to 7-hydroxycoumarin(HC) and the rates of subsequent conjugation of the produced HC to its glucuronide and sulfate esters have been determined. Prior to preparing the isolated perfused livers. rats were fed either fat free diet 10% beef tallow diet or 10% corn oil diet for 3 weeks. The rates of oxidation from EC to HC and also of the subsequent glucuronidation of HC were higher in the corn oil diet group than those found for the fat free and beef tallow diet groups. When the concentrations of infusing EC were increased stepwise there was a dose-dependnet increase for the release of the glucuronide form of HC metabolites at the expense of the sulfate ester form. This dose dependant shift observed for the corn oil group was more significnat than those found for other groups. These results indicate that corn oil feeding has produced enhancement in the rates of hepatic microsomal drug oxidation and glucuronide conjugation the reactions catalyzed by enzymes embedded in the hepatic microsomal membranes.

  • PDF

Effects of Protein Kinase C Modulation on Hepatic Hemodynamics and Glucoregulation

  • Lee, Joong-Woo;Kong, In-Deok;Park, Kyu-Sang;Chung, Hae-Sook;Filkins, James P.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.571-578
    • /
    • 1999
  • This study evaluated the effects of PKC activation using phorbol 12-myristate 13-acetate (PMA) and PKC inhibition using the isoquinoline sulfomide derivative H-7 on hemodynamics and glucoregulation in the isolated perfused rat liver. Livers were isolated from fed male Holtzman rats and perfused with Krebs Ringer bicarbonate solution under a constant flow of 50 ml/min at $35^{\circ}C.$ Portal vein pressure, glucose and lactate concentrations in the medium and oxygen consumption rates were continuously monitored by a Grass polygraph, YSI glucose and lactate monitors, and a YSI oxygen monitor, respectively. PMA at concentration of 2 to 200 nM increased the portal vein pressure, glucose and lactate production, but decreased oxygen consumption rate in a dose-dependent fashion. H-7 $(200\;{\mu}M)$ attenuated PMA (50 nM)-induced vasoconstriction $(15.1{\pm}1.36\;vs\;10.56{\pm}1.17\;mmHg),$ glucose production rate $(91.3{\pm}6.15\;vs\;71.8{\pm}2.50\;{\mu}moles/g/hr),$ lactate production rate $(72.4{\pm}6.82\;vs\;53.6{\pm}4.82\;{\mu}moles/g/hr)$ and oxygen consumption rate $(33.7{\pm}1.41\;vs\;27.9{\pm}1.75\;{\mu}l/g/min).$ The effects of PMA were blocked either by addition of verapamil $(9\;{\mu}M)$ or perfusion with $Ca^{2+}-free$ KRB. These results suggest that the hemodynamic and glucoregulatory changes in the perfused rat liver are mediated by protein kinase C activation and require $Ca^{2+}$ influx from the extracellular fluid.

  • PDF

Changes in drug metabolism during hypoxia/reoxygenation in isolated perfused rat

  • Seo, Min-Young;Cho, Tai-Soon;Lee, Sun-Mee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.98-98
    • /
    • 1997
  • This study was done to investigate the effect of vitamin E on hypoxia/reoxygenation-induced hepatic injury in isolated perfused rat liver. Rats were pretreated with vitamin E or vehicle(soybean oil). Isolated livers from fasted 18 hours were subjected to 45min of low flow hypoxia or N$_2$ hypoxia followed by reoxygenation for 30min. The perfusion medium used was KHBB(pH 7.4) and 50${\mu}$㏖/$\ell$ of ethoxycoumarin was added to the perfusate to determine the ability of hepatic drug-metabolizing systems, In low flow hypoxia model, total glutathione and oxidised glutathione levels were significantly increased by hepoxia/reoxygenation with slight increase in LDH levels. These increases were prevented by vitamin E pretreatment. In N$_2$ hypoxia model, LDH, total glutathione and oxidized glutathione levels were increased significantly by hypoxia but restored to normal level by reoxygenation. Vitamin E had little effect on this hypoxic damage. There were no significant changes in the rate of hepatic oxidation of 7-EC to 7-HC in both hepoxic models. But, the subsequent conjugation of 7-HC by sulfate or glucuronic acid were significantly decreased by hypoxia, but restored by reoxygenation in both hypoxia models. As opposed to our expectation, treatment with vitamin E aggrevated the decrease of the rate of conjugation and even inhibited the restoration by reoxygenation. Our findings suggest that hypoxia/reoxygenation diminishes phase II drug metabolizing function and this is, in part, related to decreased energy level.

  • PDF

Effects of Hydroxylated Flavonoids on the Ethoxyresorufin O-deethylase and Benzo($\alpha$)pyrene Hydroxylase

  • Sun, Sun-Ho;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.514-519
    • /
    • 1996
  • In order to understand the mechanism of action of flavonoids on the drug metabolizing enzyme, cytochrome P450IA1, this study was undertaken to examine the effect of chrysin, morin, myricetin and aminopyrine on the activities of ethoxyresorufin O-deethylase and benzo(.alpha.) pyrene hydroxylase in the liver. In the isolated perfused rat liver that was pretreated with 3-methylcholanthrene (3MC), chrysin, morin, myricetin and aminopyrine inhibited the activity of ethoxyresorufin O-deethylase with concentration dependent manner. The isolated liver perfusion with chrysin, morin, myricetin and aminopyrine showed inhibition on the induction of ethoxyresorufin O- deethylase by 3MC. And also, in mouse liver hepa I cells, 3MC-stimulated the benzo(.alpha.)pyrene hydroxylase activity which was inhibited by chrysin, morin, myricetin and aminopyrine. These results strongly suggested that hydoxylated flavonoids interfered not only the induction of cytochrome P45OIA1 enzymes by 3MC but also the interaction of substrates and enzyme.

  • PDF

Ischemic Preconditioning Ameliorates Hepatic Injury from Cold Ischemia/Reperfusion

  • PARK Sang-Won;LEE Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • We investigated whether ischemic preconditioning (IPC) protects liver against cold ischemic injury using isolated perfused rat liver. Rat livers were preconditioned by 5 minutes of ischemia and 5 minutes of reperfusion and preserved for 30 hours at $4^{\circ}C$ in University of Wisconsin solution. Livers were then reperfused for 120 minutes. Oxygen uptake and bile flow in ischemic livers markedly decreased during reperfusion. These decreases were prevented by IPC. Portal pressure was elevated in cold ischemic and reperfused livers and this elevation was prevented by IPC. Lactate dehydrogenase and purine nucleoside phosphorylase activities markedly increased during reperfusion. These increases were prevented by IPC. The ratio of reduced glutathione to glutathione disulfide was lower in ischemic livers. This decrease was prevented by IPe. Our findings suggest that IPC protects the liver against the deleterious effect of cold ischemia/reperfusion, and this protection is associated with the reduced oxidative stress.

Inhibition of Fat-Storing Cell Proliferation by a Monomeric Arginase Derived from Perfused Rat Liver

  • Kim, Ki-Yong;Choi, In-Pyo;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • A fulminant hepatitis is associated with massive liver cell necrosis and a high mortality rate. But survivors regenerate a normal liver and do not have chronic liver disease. This clinical course suggests that the acutely injured livers release a factor that allows a recovery from chronic hepatitis or cirrhosis. The objective of this study was to isolate and characterize an anti-fibrotic factor from acutely damaged rat livers. The liver cell necrosis was prepared from rat by warm ischemical perfusion and the perfusates were assessed against the growth inhibition of fat-storing cells (FSC). A liver-derived growth inhibitory factor (LDGIF) was purified from ischemically damaged rat livers by chromatographies on Sephacryl S-300, CM Sepharose, hydroxyapatite, and Superose 12. The LDGIF was isolated with an overall purification of 194-fold and 40% recovery. Although LDGIF was identified as the rat liver arginase by Nterminal sequence analysis, LDGIF exists as a monomer and the purified native arginase has a trimer form. Furthermore, LDGIF has a lower enzyme activity on the hydrolysis of L-arginine and a higher inhibitory effect on proliferation of FSC than the normal rat liver arginase. The catalytic activity of LDGIF is ascribed to the monomeric characteristics of the LDGIF. Therefore, the inhibitory action of LDGIF might not be due to the arginine depletion by the catalytic activity of arginase. In conclusion, the presence of the LDGIF could interpret the clinical course that serious fibrosis is not found in the liver of patients recovering from severe hepatic necrosis due to fulminant hepatitis, suggesting that this LDGIF may provide a novel target for the prevention and treatment of hepatic fibrosis.

  • PDF

Role of Kupffer Cells in Cold/warm Ischemia-Reperfusion Injury or Rat Liver

  • Lee, Young-Goo;Lee, Sang-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.620-625
    • /
    • 2000
  • The mechanisms of liver injury from cold storage and reperfusion are not completely under-stood. The aim of the present study was to investigate whether the inactivation of Kupffer cells (KCs) by gadolinium chloride ($GdCl_3$) modulates ischemia-reperfusion injury in the rat liver. Hepatic function was assessed using an isolated perfused rat liver model. In livers subjected to cold storage at $4^{\circ}C$ in University of Wisconsin solution for 24 hrs and to 20 min rewarm-ing ischemia, oxygen uptake was markedly decreased, Kupffer cell phagocytosis was stimulated, releases of purine nucleoside phosphorylase and lactate dehydrogenase were increased as compared with control livers. Pretreatment of rats with $GdCl_3$) , a selective KC toxicant, suppressed kupffer cell activity, and reduced the grade of hepatic injury induced by ischemia-reperfusion. While the initial mixed function oxidation of 7-ethoxycoumarin was not different from that found in the control livers, the subsequent conjugation of its meta-bolite to sulfate and glucuronide esters was suppressed by ischemia-reperfusion, CdCl$_3$restored sulfation and glucuronidation capacities to the level of the control liver. Our findings suggest that Kupffer cells could play an important role in cold/warm ischemia-reperfusion hepatic injury.

  • PDF

The study on the metabolism of benzidine in the isolated perfused rat liver (흰쥐의 적출 간 관류법을 이용한 벤지딘 대사에 관한 연구)

  • Bae, Mun Joo;Roh, Jae Hoon;Cho, Young Bong;Kim, Choon Sung;Chun, Mi Ryoung;Kim, Chi Nyon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.28-37
    • /
    • 1996
  • Benzidine, an aromatic amine used primarily in the manufacture of azo dyes, is recognized as a urinary bladder carcinogen in humans. In rats, mice, and hamsters, chronic exposure to benzidine resulted in tumors of the liver. The present study was undertaken to suggest analyzing the metabolites of benzidine with the optimal condition, identify the metabolites of benzidine, and observe time variance of the metabolites in the isolated perfusated rat liver. N-acetylbenzidine was synthesized by acetylation of benzidine with acetic anhydride and separated by thin layer chromatography(TLC) and high performance liquid chromatography(HPLC). To analysis benzidine and the metabolites of benzidine, HPLC operating condition has been optimized by means of preliminary experiment. The mobile phase consisted of acetonitrile(37%) in phosphate buffer, flow rate maintained at 1.0 ml/min. Optimal detective conditions were electrochemicaldetector(ECD) at 0.75 V for benzidine and N-acetylbenzidine and ultravioletdetector(UVD) at 287 nm for N,N'-diacetylbenzidine. The separation system was composed of a guard column and a separation column(Polymer C18, $4.6{\times}250cm$) at a temparature of $40^{\circ}C$. The perfusion system was equilibrated for 30 minutes before addition of benzidine to the perfusate. Samples of the perfusate were collected at time intervals(0, 10, 20, 30, 60, 90, 120 min) during the 2 hour perfusion. Before analyzing samples by HPLC/ECD/UVD, samples had been treated with sep-pak. Samples of perfusate analyzed by HPLC/ECD/UVD and the metabolites of benzidine in the isolated perfused rat liver were N-acetylbenzidine and N,N'-diacetylbenzidine. Benzidine metabolized over 60% during the initial 30 minutes of perfusion, extensively by 1 hour, and was undetectable in the perfusate. N-acetylbenzidine increased by 30 minutes of perfusion, declined. N,N'-diacetylbenzidine increased the 0-90 minutes period, remained constant during the 90-120 minutes period.

  • PDF