• Title/Summary/Keyword: Isolated perfused rat hearts

Search Result 53, Processing Time 0.025 seconds

Effects of Myocardial Protection of Verapamil in Serum: Under Langendorff Apparatus in Ischemic Arrest Heart (Verapamil [anticalcium agent]의 심근 보호작용Langendorff씨 장치하의 심근 보호 작용)

  • Yu, Hong-Seok;Jeong, Jeong-Gi;Lee, Dong-Jun
    • Journal of Chest Surgery
    • /
    • v.23 no.6
    • /
    • pp.1074-1083
    • /
    • 1990
  • This study was evaluated the metabolic, physiologic and histologic effects of myocardial protection of verapamil[isoveratril]on isolated rat hearts to 90 minutes of ischemic arrest. Heart was perfused with a modified Kreb’s Henseleit bicarbonate buffer with glucose and arrested with retrograde coronary perfusion by glucose insulin[GI], potassium and verapamil. Mean aortic systolic pressure, heart rate, coronary flows were measured and morphologic changes were examined during working heart perfusion. Perfusion and arrest were controlled four groups subjected 60 isolated rat hearts. Four groups hearts reperfused during 40 minutes after 90 minutes global ischemia for physiologic recovery. 15 hearts of four groups were assayed to histological morphologic changes. GI treated hearts recovered less than 28% of function and changed more than 80% of mitochondria of control group. Verapamil hearts[0.2, 0.1 gm/kg] recovered more than 88% of function and permitted the maintenance of continuous cellular level of Serum Glutamic Oxalaxetate Transaminase[SGOT], but declined 28% of Phosphate Kinase[CP], GI treated heart showed widespread evidence of extensive damage of mitochondria. The damage was that interstitial huge edema are present and there was contraction band formation within the swollen cells. The verapamil and potassium group were not found morphologic change compared with control group. Their functions were shown that metabolic and physiologic action of verapamil-group lasted 20 minutes longer than potassium group.

  • PDF

The Effect of Temperature of Cardioplegic Soultion on Myocardial Protection from Ischemia - Experimental Study using Isolated Rat Heart Perfusion Technique - (흰쥐의 적출된 심장에서 심정지액의 온도가 심근보호에 미치는 영향)

  • 김용한
    • Journal of Chest Surgery
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 1992
  • The effect of temperature of cardioplegic solution on myocardial preservation was studied using isolated rat heart perfusion technique. Twenty Sprague-Dawley rats, weighing 120~140gm, were pretreated with intraperitoneal injection of heparin sodium[300u/kg] and then the hearts were excised after cervical herniation 30 minutes later. The hearts were perfused in isolated working heart apparatus with oxygenated modified Tyrode solution at 37oC. After 10 minutes of non working heart perfusion, the hearts were subjected to arrest for 30 minutes by administration of 5cc cardioplegic solution at the temperature of 4oC [Group I ], 15oC [Group II], 25oC [Group III], 37oC[Group IV]. At the same time, the topical cooling of heart was performed using ice saline. After arrest, the hearts were reperfused by non working heart perfusion for 1 hour with modified Tyrode solution at 37oC. The CPK, GOT and LDH in reperfusate were measured at 5,20,40,60 minutes after start of reperfusion. With the values of those, we compared the effect of temperature of cardioplegic solution on myocardial preservation. The results were as follows; 1. The enzyme values in reperfusate were highest at 5 minute and after then declined. 2. At 5 minutes after reperfusion, the enzyme values in Group I were lower than those in other Groups. These results suggest that the cardioplegic solutions using for cardiac arrest and myocardial protection can be working better at 4oC than at any other temperature.

  • PDF

Myocardial Protection by Recombinant Soluble P-selectin Glyco-protein Ligand-1: Suppression of Neutrophil and Platelet Interaction Following Ischemia and Reperfusion

  • Ham, Sang-Soo;Jang, Yoon-Young;Song, Jin-Ho;Lee, Hyang-Mi;Kim, Kwang-Joon;Hong, Jun-Sik;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.515-523
    • /
    • 2000
  • Polymorphonuclear leukocytes (PMNs) play an important role in myocardial ischemia/reperfusion (MI/R) injury. Moreover, platelets are also important blood cells that can aggravate myocardial ischemic injury. This study was designed to test the effects of PMNs and platelets separately and together in provoking cardiac dysfunction in isolated perfused rat hearts following ischemia and reperfusion. Additional control rat hearts were perfused with $75{\times}10^6$ PMNs, with $75{\times}10^6$ platelets, or with $75{\times}10^6\;PMNs+75{\times}10^6$ platelets over a five minute perfusion followed by a 75 min observation period. No significant reduction in coronary flow (CF), left ventricular developed pressure (LVDP), or the first derivative of LVDP (dP/dt max) was observed at the end of the observation period in any non-ischemic group. Similarly, global ischemia (I) for 20 min followed by 45 minutes of reperfusion (R) produced no sustained effects on the final recovery of any of these parameters in any group of hearts perfused in the absence of blood cells. However, I/R hearts perfused with either PMNs or platelets alone exhibited decreases in these variables of $5{\sim}10%$ (p<0.05 from control). Furthermore, I/R hearts perfused with both PMNs and platelets exhibited decreases of 50 to 60% in all measurements of cardiac function (p<0.01). These dual cell perfused I/R hearts also exhibited marked increases in cardiac myeloperoxidase (MPO) activity indicating a significant PMN infiltration, and enhanced P-selectin expression on the coronary microvascular endothelium. All cardiaodynamic effects as well as PMN accumulation and P-selectin expression were markedly attenuated by a recombinant soluble PSGL-1 which inhibits selectin mediated cell adhesion. These results provide evidence that platelets and PMNs act synergistically in provoking post-reperfusion cardiac dysfunction, and that this may be largely due to cell to cell interactions mediated by P-selectin. These results also demonstrate that a recombinant soluble PSGL-1 reduces myocardial reperfusion injury by platelet and PMNs interaction.

  • PDF

Degradation of Bradykinin, a Cardioprotective Substance, during a Single Passage through Isolated Rat-Heart

  • Ahmad M.;Zeitlin I.J.;Parratt J.R.;Pitt A.R.
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.241-248
    • /
    • 2006
  • Angiotensin converting enzyme (ACE) inhibitors have cardioprotective effects in different species including human. This cardioprotective effect is mainly due to the inhibition of bradykinin (BK) degradation rather than inhibition of the conversion of angiotensin I to angiotensir. II. Bradykinin, a nonapeptide, has been considered to be the potential target for various enzymes including ACE, neutral endopeptidase 24.11, carboxypeptidase M, carboxypeptidase N, proline aminopeptidase, endopeptidase 24.15, and meprin. In the present study, the coronary vascular beds of Sprague Dawley rat isolated hearts were perfused (single passage) with Krebs solution alone or with different concentrations of BK i.e. $2.75{\times}10^{-10},\;10^{-7},\;10^{-6}\;and\;10^{-5}M$ solution. Percent degradation of BK was determined by radioimmunoassay. The degradation products of BK after passing through the isolated rat-hearts were determined using RP-HPLC and mass spectroscopy. All the four doses of BK significantly decreased the perfusion pressure during their passage through the hearts. The percentage degradation of all four doses was decreased as the concentration of drug was increased, implying saturation of a fixed number of active sites involved in BK degradation. Bradykinin during a single passage through the hearts degraded to give [1-7]-BK as the major metabolite, and [1-8]-BK as a minor metabolite, detected on HPLC. Mass spectroscopy not only confirmed the presence of these two metabolites but also detected traces of [1-5]-BK and arginine. These findings showed that primarily ACE is the major cardiac enzyme involved in the degradation of bradykinin during a single passage through the coronary vascular of bed the healthy rat heart, while carboxypeptidase M may have a minor role.

Pharmacodynamics of Potassium Channel Opener Lemakalim in the Isolated Rat Hearts and Conscious SHRs under Hyperkalemic and Hypokalemic Condition (칼륨채널 활성물질 Lemakalim의 고칼륨혈증 및 저칼륨혈증에서의 심기능에 대한 영향 및 항 고혈압작용)

  • 신홍섭;신화섭;권광일
    • YAKHAK HOEJI
    • /
    • v.37 no.5
    • /
    • pp.463-475
    • /
    • 1993
  • Pharmacological effects of lemakalim on cardiovascular system were investigated using isolated rat hearts and conscious SHRs subjected to hyperkalemic and hypokalemic condition. In the isolated hearts perfused with normal physiological salt solution(4.7 mM KCI), lemakalim increased cardiac function and coronary flow, and these effects were significantly potentiated under hypokalemic(1.2, 2.5 mM KCI), but attenuated under hyperkalemic(IO mM KCI) condition. In conscious SHRS, lemakalim(0.1, 0.2, 0.3mg/kg, p.o.) produced a dose-related decrease in systolic blood pressure, the maximal hypotensive effect being reached around 0.5 hr after dosing. The intensity and the duration of hypotensive effect of lemakalim were significantly increased when administered in combination with dihydrochlorothiazide (2 mg/kg, p.o.), but decreased with triamterene(32 mg/kg, p.o.). It appears that the differential effects of two types of diuretics on the hypotensive action of lemakalim are due to their hypokalemic and hyperkalemic action, respectively. It is conclued that the concomitant use of $K^{+}$ channel openers and hypokalemic diuretics may be an appropriate model of combination therapy in the treatment of hypertension.

  • PDF

Effects of Kammaegdaejotang on the hemodynamic function in the isolated perfused rat heart (감맥대조탕(甘麥大棗湯)이 적출 흰쥐 심장의 혈역학적(血力學的) 기능(機能)에 미치는 영향(影響))

  • Kim, Deog-Gon;Park, Sung-Nam
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.173-187
    • /
    • 2007
  • Objectives : In order to verify the cardiovascular hemodynamic function of Kammaegdaejo-tang, the experiment was performed in the rats. Methods : Twelve hearts removed from male Sparague-Dawley rats weighing between 250g and 300g were perfused by the Langendorff technique with modified 37 Krebs-Henseleit's buffer solution at a constant perfusion pressure. They were randomly assigned to one of two groups, supplied with either normal saline or Kammaegdaejotang administration. Heart rate, left ventricular pressure, +dp/dt maximum, -dp/dt maximum, and -dp/dt/ +dp/dt ratio were evaluated at baseline after the administration of either normal saline or Kammaegdaejotang. Results : Kammaegdaejotang made the heart rate increasing significantly (p<0.05). Kammaegdaejotang did not effectively work on left ventricular pressure of the isolated heart(p=0.11, no significance). The significant effects of Kammaegdaejotang were observed on +dp/dt max and -dp/dt max(p<0.05). Kammaegdaejotang did not effectively work on -dp/dt/ +dp/dt ratio(p=0.24, no significance).

  • PDF

Teucrium polium L. Improved Heart Function and Inhibited Myocardial Apoptosis in Isolated Rat Heart Following Ischemia-Reperfusion Injury

  • Mahmoudabady, Maryam;Talebian, Faezeh Sadat;Zabihi, Narges Amel;Rezaee, Seyed Abdolrahim;Niazmand, Saeed
    • Journal of Pharmacopuncture
    • /
    • v.21 no.3
    • /
    • pp.159-167
    • /
    • 2018
  • Objectives: Myocardial reperfusion is the only logical cure for ischemic heart disease. However, ischemic-reperfusion (I/R) injury is one of the underlying factors facilitating and accelerating the apoptosis in the myocardium. This study set to investigate the impact of Teucrium polium (TP) hydro-alcoholic extract on I/R induced apoptosis in the isolated rat heart. Methods: Isolated rat hearts were classified into six groups. The control samples were subjected to 80 min of perfusion with Krebs-Henseleit bicarbonate (KHB) buffer; in control-ischemia group, after primary perfusion (20 min) the hearts were exposed to global ischemia (20 min) and reperfusion (40 min). Pretreated groups were perfused with $500{\mu}M$ of vitamin C and various TP concentrations (0.5, 1, 2 mg/ml) for 20 min, and then the hearts were exposed to ischemia and reperfusion for 20 min and 40 min, respectively. Cardiodynamic parameters including rate pressure product (RPP), heart rate (HR), the maximum up/down rate of left ventricular pressure (${\pm}dp/dt$), left ventricular developed pressure (LVDP), and coronary artery flow (CF) were achieved from Lab Chart software data. The Bax and BCl-2 gene expressions were measured in heart samples. Results: Hearts treated with TP extract and vit C represented a meaningful improvement in cardiac contractile function and CF. The overexpression of Bcl-2, downregulation of Bax, and improvement of apoptotic index (Bax/Bcl-2) were observed in pretreated TP extract and vit C hearts. Conclusion: The TP extract was found to ameliorate the cardiac function in the reperfused myocardium. Also, it can hinder apoptotic pathways causing cardioprotection.

The Protective Effect of Epigallocatechin-3 Gallate on Ischemia/Reperfusion Injury in Isolated Rat Hearts: An ex vivo Approach

  • Piao, Cheng Shi;Kim, Do-Sung;Ha, Ki-Chan;Kim, Hyung-Ryong;Chae, Han-Jung;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.259-266
    • /
    • 2011
  • The aim of this study was to evaluate the preventive role of epigallocatechin-3 gallate (EGCG, a derivative of green tea) in ischemia/reperfusion (I/R) injury of isolated rat hearts. It has been suggested that EGCG has beneficial health effects, including prevention of cancer and heart disease, and it is also a potent antioxidant. Rat hearts were subjected to 20 min of normoxia, 20 min of zero-flow ischemia and then 50 min of reperfusion. EGCG was perfused 10 min before ischemia and during the whole reperfusion period. EGCG significantly increased left ventricular developed pressure (LVDP) and increased maximum positive and negative dP/dt (+/-dP/dtmax). EGCG also significantly increased the coronary flow (CF) at baseline before ischemia and at the onset of the reperfusion period. Moreover, EGCG decreased left ventricular end diastolic pressure (LVEDP). This study showed that lipid peroxydation was inhibited and Mn-SOD and catalase expressions were increased in the presence of EGCG. In addition, EGCG increased levels of Bcl-2, Mn-superoxide dismutase (SOD), and catalase expression and decreased levels of Bax and increased the ratio of Bcl-2/Bax in isolated rat hearts. Cleaved caspase-3 was decreased after EGCG treatment. EGCG markedly decreased the infarct size while attenuating the increase in lactate dehydrogenase (LDH) levels in the effluent. In summary, we suggest that EGCG has a protective effect on I/R-associated hemodynamic alteration and injury by acting as an antioxidant and anti-apoptotic agent in one.

The Effect of Ginseng on Heart Contraction and Sarcoplasmic Reticulum Function(I) -The Effect of Ginseng on the Myocardial Contractility and Force-Velocity Curves of Papillary Muscles from Rats (인삼이 심장 수축력과 소포체 기능에 미치는 영향(제1보) -흰쥐 심장의 수축력 및 유두근의 Force-Velocity 곡선에 대한 인삼성분의 효과-)

  • 오우택;김낙두
    • YAKHAK HOEJI
    • /
    • v.27 no.2
    • /
    • pp.155-161
    • /
    • 1983
  • The rates of deterioration of contractile forces of isolated hearts from ginseng component treated rats were determined. Rat papillary muscles were also used to study the influence of ginseng on the mechanical performance of heart. Rats weighing 200-300g were administered orally with ginseng ethanol extract (100mg/kg/day), ginseng total saponin (50mg/kg/day) and ginsenoside Rbl (5mg/kg/ day) for a week respectively. The isolated hearts from rats were perfused with Krebs-Henseleit solution by Langendorff perfusion apparatus. The force-velocity relation was clearly seen with the load-generator equipped isotonic shortening recording apparatus. The control group was only able to maintain 60% of their initial contractile forces after 120 minutes of perfusion, whereas ginseng ethanol extract treated group was able to sustain nearly their initial strength even after 120 minutes of perfusion. The similar effects were seen in the hearts treated with total ginseng saponin and ginsenoside Rb$_{1}$. Ginseng ethanol extract did alter mechanical performance of rat ventricular myocardium. It increased both maximum velocity(Vmax) of isotonic shortening and isometric force (P$_{0}$) and showed increased velocity of shortening significantly (P<0,05) at any one afterload.d.

  • PDF

Cardioprotective and Antihypertensive Effects of KR-31281, KR-31282 and KR-31299, Newly Synthesized $K_{ATP}$ Openers, in Conscious Rats and Isolated Ischemic Rat Hearts (신규 합성 $K_{ATP}$ 통로 개방제인 KR-31281, KR-31282 및 KR-31299의 흰쥐 적출 허혈 심장 및 비마취 흰쥐에 대한 심장보호 및 혈압강하 작용)

  • Lee, Sun-Sook;Yun, Yeo-Pyo;Shin, Hwa-Sup
    • Korean Journal of Clinical Pharmacy
    • /
    • v.7 no.1
    • /
    • pp.33-39
    • /
    • 1997
  • Cardiac and antihypertensive effects of BMS-180448, a cardiac-selective ATP-sensitive potassium channel opener, and its newly synthesized derivatives KR-31281, KR-31282 and KR-31299 were evaluated in isolated perfused rat hearts (25 min global ischemia/30 min reperfusion) and conscious rats. Three new compounds $(10\;{\mu}M)$ induced positive inotropism as evidenced by increased LVDP (left ventricular developed pressure) and RPP (Rate-Pressure Product) in nonischemic rat heart. HR-31299 increased CF (coronary flow) and HR (heart rate) but the other two had no effects. KR-31282, KR-31281 and HR-31299 had a tendency to increase reperfusion LVDP and RPP compared with vehicle, while the latter two significantly reduced reperfusion EDP with a tendency to inclose TTC (time to contracture). All three KR-compounds had very weak effects on MBP and HR in conscious rats. These results indicate that KR-31281 and HR-31299 may have some cardioprotective effects, although weaker than BMS-180448, and their mode of action different from that of BMS-180448, despite the similarity in major structural moeity.

  • PDF