• Title/Summary/Keyword: Isolated Microgrid

Search Result 10, Processing Time 0.019 seconds

Supervisory Protection System of Microgird Interconnected to Low Voltage Grids (저압계통 연계형 마이크로그리드의 보호감시 시스템)

  • Jyung, Tae-Young;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.36-42
    • /
    • 2011
  • This paper mainly proposes the protective coordination scheme of the microgrid system. The microgrid protection is identical to the conventional protection system separating the normal part and contingency part to reduce damage when the contingency occur at power cables, facilities. But they are different in the protection type. The conventional protection system only considers unidirectional current. However the microgrid protection should be considered not only unidirectional current but also backfeed current because various microsources and loads are installed in the microgrid system. In case the contingency occurs in microsource, when microgrid is interconnected to grid, the protection system should be configured to not separate microgrid from grid before the microsource is isolated to microgrid. And in case of fault occur in power system, the microsources should not isolated to microgrid before the static switch at PCC is tripped to separate from power system. Considering these characteristic of microgird, this paper proposes the protective coordination scheme of microgrid and implemented the on-line real time monitoring system. Especially in case the microgrid is connected to low voltage distribution system with 220/380V voltage level, the proposed protection method with power IT technology can solve the problems when the existing protective devices only applied to the microgrid system.

Microgrid Island Operation Based on Power Conditioning System with Distributed Energy Resources for Smart Grid (스마트 그리드를 위한 분산자원과 전력변환장치 기반 마이크로그리드 독립운전)

  • Heo, Sewan;Park, Wan-Ki;Lee, Ilwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1093-1101
    • /
    • 2017
  • Microgrid as a unit component consisting a smart grid is an isolated system, which has a decentralized power supply system. This paper proposes an electrical isolation of the microgrid from the utiliy grid based on a power conditioning system, and also proposes an operation method maintaining the isolated state efficiently using diverse distributed energy resources such as renewable energy sources and energy storage system. The proposed system minimizes the influence of the grid connection on the internal load though a phase detection and synchrnoization to the utiligy grid and the microgrid can be stable even if the grid is failed.

Power Balancing Strategy in the Microgrid During Transient (마이크로그리드 과도상태 시 전력 수급 균형 전략)

  • Seo, Jae-Jin;Lee, Hak-Ju;Jung, Won-Wook;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.707-714
    • /
    • 2010
  • When problems such as line fault, breakdown of a substation or a generator, etc. arise on the grid, the Microgrid is designed to be separated or isolated from the grid. Most existing DGs(Distributed Generators) in distribution system use rotating machine. However, new DGs such as micro gas turbine, fuel cell, photo voltaic, wind turbine, etc. will be interfaced with the Microgrid through an inverter. So the Microgrid may have very lower inertia than the conventional distribution system. By the way, the rate of change of frequency depends on the inertia of the power system. Moreover, frequency has a strong coupling with active power in power system. Because the frequency of the Microgrid may change rapidly and largely during transient, appropriate and fast control strategy is needed for stable operation of the Microgrid. Therefore, this paper presents a power balancing strategy in Microgrid during transient. Despite of strong power or frequency excursions, power balancing in the Microgrid can be maintained.

Functional Properties of Stand-alone Microgrid EMS Application (에너지 자립섬 EMS 어플리케이션의 기능적 특성)

  • Lee, Ha-Lim;Chun, Yeong-Han;Chae, Wookyu;Park, Jungsung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.115-119
    • /
    • 2016
  • For many past years, research in the operation of stand-alone Microgrid, which provides electric power generated from renewable energy sources and energy storage system instead of diesel generators, has been a major issue in order to prepare the exhaustion of fossil fuel and to protect environment, in island grids. Samso Island, known as the world's first stand-alone Microgrid in Denmark, is connected to the mainland grid through AC system, which has different technical conditions with Korea's isolated power system. Korea's first stand-alone Microgrid has been built in Ga-sa island, Chun-la-nam-do, based on Energy Management System (EMS) operation, and other islands are under construction to follow the next step. These stand-alone Microgrid's has large capacity of Battery Energy Storage System (BESS) and the proportion of the renewable energy sources are large, which makes it necessary to use a Microgrid-Energy Management System (MG-EMS) to operate the grid effectively and economically. However, since the main subject of MG-EMS is different from EMS, specific characteristics and functions must be different as well. In this paper, the necessary characteristics and functions are explained for a general MG-EMS compared to a large power system EMS.

Real-time Optimal Operation Planning of Isolated Microgrid Considering SOC balance of ESS

  • Lee, Yoon Cheol;Shim, Ji Yeon;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.57-63
    • /
    • 2018
  • The operating system for an isolated microgrid, which is completely disconnected from the central power system, aims at preventing blackouts and minimizing power generation costs of diesel generators through efficient operation of the energy storage system (ESS) that stores energy produced by renewable energy generators and diesel generators. In this paper, we predict the amount of renewable energy generation using the weather forecast and build an optimal diesel power generation plan using a genetic algorithm. In order to avoid inefficiency due to inaccurate prediction of renewable energy generation, our search algorithm imposes penalty on candidate diesel power generation plans that fail to maintain the SOC (state of charge) of ESS at an appropriate level. Simulation experiments show that our optimization method for maintaining an appropriate SOC balance can prevent the blackout better when compared with the previous method.

Development of Low-voltage Seamless Transfer Microgrid on Grid-connected Type Islands by Autonomous Operation (자율운전에 의한 계통연계형 도서의 저압 무순단 마이크로그리드 구축)

  • Kim, Jeong Hun;Kwon, Jung-Min;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.169-176
    • /
    • 2017
  • This paper presents research on low-voltage microgrids to maintain a continuous power supply to critical loads on grid-connected islands in Korea. The low-voltage microgrids of this paper focused on that changes public office buildings into uninterrupted microgrids by autonomous operation. For this, a microgrid controller (MGC) and a power conditioning system (PCS) that allow a seamless transfer between grid-connected and grid-isolated operation are proposed. The proposed PCS operates with a silicon controlled rectifier (SCR) switch and employs a simple structure. It supplies power continuously without operators through a coordinated operation between MGC and PCS. In addition, proposed MG has a schedule operation for minimizing electricity charges and provides ancillary services that enable the utilization of resources according to the operation purpose of utility distribution networks. To demonstrate the uninterrupted low-voltage microgrid proposed in this study, a microgrid was implemented and tested in a public office building in Anjwa Island, Jeollanam-do in Korea. A seamless, autonomous operation history, despite system disturbances, was obtained through a long-term demonstration of operation. The results showed that the proposed microgrid technology can be used to achieve energy resilience in grid-connected island areas.

Power and Economic Simulation of Island for the Field Demonstration Test of Smart Microgrid System Based on Stand-alone Wind power (독립형 풍력기반 Smart Microgrid 시스템의 현장 실증 시험을 위한 도서지역 전력 및 경제성 시뮬레이션)

  • Kang, SangKyun;Lee, EunKyu;Lee, JangHo
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.22-30
    • /
    • 2014
  • The isolated self-generating electricity with diesel engine generator has been used in islands far away from main land. It costs high because of increasing oil price, and unsafe to have supplying oil and its related components by ship due to unexpectable marine conditions. Therefore there is the need for the hybrid system of renewable energy like wind or solar energy systems with oil engine generator, which can reduce oil use and extend oil supplying period. In this study, the feasibility of such hybrid system with smart micro grid on the eight islands of Jeon-nam province is surveyed to find good place for the demonstration test of the hybrid system. In each island, 3 wind turbine systems of 10 kW and photovoltaic of 20 kW are tested with already installed diesel engine. The performance and costs of the hybrid system in each island are compared in the given conditions of solar and wind energy potential. As a result of the study, Jung-ma island is recommended for the optimum place to make real field demonstration test of isolated hybrid generating and smart grid systems.

Isolated Microgrid Planning Optimization to Maintain SOC Balance in ESS (ESS의 SOC 균형을 고려한 독립형 마이크로그리드 운영계획 최적화)

  • Lee, Yooncheol;Kim, Jeongmin;Ryu, Kwang Ryel
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.168-169
    • /
    • 2017
  • 중앙 전력과 단절된 독립형 마이크로그리드는 발전된 신재생 에너지를 저장하는 ESS의 효율적인 운영을 통해 블랙아웃을 방지하고 디젤 발전기의 발전 비용을 최소화하는 것이 필요하다. 본 논문에서는 기상 정보를 이용하여 신재생 에너지 발전량을 예측하고, 최적화 알고리즘을 이용해 생성된 후보 계획의 평가 시 ESS의 SOC를 유지하지 못하는 경우 페널티를 부여함으로써 신재생 발전량 예측의 오류에 대비하였다. 시뮬레이션 실험을 통해 제안하는 SOC 유지를 고려한 운영 계획 최적화 방안이 기존의 예측 제어 기반 최적화 방안에 비해 블랙아웃을 방지하면서도 디젤 발전 비용을 절감할 수 있음을 확인하였다.

  • PDF

Robust Observer Design for an Isolated Power System with Model Uncertainty using H-Norm

  • Goya, Tomonori;Senjyu, Tomonobu;Omine, Eitaro;Yona, Atsushi;Urasaki, Naomitsu;Funabashi, Toshihisa
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.498-504
    • /
    • 2010
  • The output power fluctuations of renewable energy power plants such as wind turbine generators and photovoltaic systems result in frequency deviations and terminal voltage fluctuations. Furthermore, these power fluctuations also affect the turbine shaftings of diesel generators and gas-turbine generators which are the main power generation systems on isolated islands. Therefore, it is important to achieve torsional torque suppression. Since the measurement of torsional torque is technically difficult, and there is an uncertainty in the mechanical constants of the shaft torsional system. This paper presents an estimation system that estimates torsional torque by using a developed $H_{\infty}$ observer. In addition to the above functions, the proposed shaft torque observer incorporates a parameter identification system that aims to improve the estimation accuracy. The simulation results validate the effectiveness of the proposed $H_{\infty}$ observer and the parameter identification.

DP Formulation of Microgrid Operation with Heat and Electricity Constraints

  • Nguyen, Minh Y;Choi, Nack-Hyun;Yoon, Yong-Tae
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.919-928
    • /
    • 2009
  • Microgrids (MGs) are typically comprised of distributed generators (DGs) including renewable energy sources (RESs), storage devices and controllable loads, which can operate in either interconnected or isolated mode from the main distribution grid. This paper introduces a novel dynamic programming (DP) approach to MG optimization which takes into consideration the coordination of energy supply in terms of heat and electricity. The DP method has been applied successfully to several cases in power system operations. In this paper, a special emphasis is placed on the uncontrollability of RESs, the constraints of DGs, and the application of demand response (DR) programs such as directed load control (DLC), interruptible/curtaillable (I/C) service, and/or demand-side bidding (DSB) in the deregulated market. Finally, in order to illustrate the optimization results, this approach is applied to a couple of examples of MGs in a certain configuration. The results also show the maximum profit that can be achieved.