• Title/Summary/Keyword: Isogrid Structure

Search Result 4, Processing Time 0.016 seconds

Parameter Study of Buckling Behavior for Isogrid Structure (등방성격자 구조의 좌굴거동에 대한 매개변수 분석)

  • Kang, Kyunghan;Kim, Yongha;Park, Jinho;Kim, Hyunduk;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.8-14
    • /
    • 2013
  • When launch vehicles are manufactured, one of the key points is a design of lightweight structure for reducing costs. Isogrid structure was designed to solve this topic, and many researches were carried out about buckling load because compression load is mainly applied to them. Recently, many studies are also being carried out about FEM model geometry of isogrid structure. The reason is that isogrid structure depends on size of ribs so it is difficult to modify about small changes in rib pattern. In this study, 1/8 model of cylindrical isogrid structure model was developed to analyze buckling behavior. Through parameter study, buckling analysis were performed to analyze buckling load and buckling mode depending on size of ribs.

Buckling Test and Non-linear Analysis of Aluminium Isogrid Panel (알루미늄 lsogrid 패널의 좌굴시험 및 비선형 해석)

  • Yoo, Joon-Tae;Lee, Jong-Woong;Yoon, Jong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2005
  • There are many methods to reinforce the cylindrical structure for light weight design like skin-stringer and semi-monocoque. Isogrid is one of the reinforced structures to improve buckling load. Isogrid has many advantages for complex load case, internal pressure and concentrated load.In this paper, compressive buckling test and non-linear FE analysis of the isogrid panel are described. Diameter of panel is 2.4m and thickness of plate is 11.43mm. The angle which the panel accomplish is about 70 degrees and, its height is about 660mm. Local buckling, global buckling and variation of stiffness after local buckling were observed during buckling test of the panel. MSC/MARC is used for non-linear FE analysis. When analysis, initial imperfection of panel which occurred during plastic forming is considered. The results of analysis for buckling mode and buckling load have good agreements with test.

DEVELOPMENT OF LIGHTWEIGHT OPTICAL TELESCOPE KIT USING ALUMINUM PROFILE AND ISOGRID STRUCTURE

  • Park, Woojin;Lee, Sunwoo;Han, Jimin;Ahn, Hojae;Ji, Tae-Geun;Kim, Changgon;Kim, Dohoon;Lee, Sumin;Kim, Young-Jae;Kim, Geon-Hee;Kim, Junghyun;Kim, Ilhoon;Pak, Soojong
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • We introduce the Transformable Reflective Telescope (TRT) kit that applies an aluminum profile as a base plate for precise, stable, and lightweight optical system. It has been utilized for optical surface measurements, developing alignment and baffle systems, observing celestial objects, and various educational purposes through Research & Education projects. We upgraded the TRT kit using the aluminum profile and truss and isogrid structures for a high-end optical test device that can be used for prototyping of precision telescopes or satellite optical systems. Thanks to the substantial aluminum profile and lightweight design, mechanical deformation by self-weight is reduced to maximum 67.5 ㎛, which is an acceptable misalignment error compared to its tolerance limits. From the analysis results of non-linear vibration simulations, we have verified that the kit survives in harsh vibration environments. The primary mirror and secondary mirror modules are precisely aligned within 50 ㎛ positioning error using the high accuracy surface finished aluminum profile and optomechanical parts. The cross laser module helps to align the secondary mirror to fine-tune the optical system. The TRT kit with the precision aluminum mirror guarantees high quality optical performance of 5.53 ㎛ Full Width at Half Maximum (FWHM) at the field center.

Effect of perforation patterns on the fundamental natural frequency of microsatellite structure

  • Ahmad M. Baiomy;M. Kassab;B.M. El-Sehily;R.M. El-Kady
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2023
  • There is a burgeoning demand for minimizing the mass of satellites because of its direct impact on reducing launch-to-orbit cost. This must be done without compromising the structure's efficiency. The present paper introduces a relatively low-cost and easily implementable approach for optimizing structural mass to a maximum natural frequency. The natural frequencies of the satellite are of utmost pertinence to the application requirements, as the sensitive electronic instrumentation and onboard computers should not be affected by the vibrations of the satellite structure. This methodology is applied to a realistic model of Al-Azhar University micro-satellite in partnership with the Egyptian Space Agency. The procedure used in structural design can be summarized in two steps. The first step is to select the most favorable primary structural configuration among several different candidate variants. The nominated variant is selected as the one scoring maximum relative dynamic stiffness. The second step is to use perforation patterns reduce the overall mass of structural elements in the selected variant without changing the weight. The results of the presented procedure demonstrate that the mass reduction percentage was found to be 39% when compared to the unperforated configuration that had the same plate thickness. The findings of this study challenge the commonly accepted notion that isogrid perforations are the most effective means of achieving the goal of reducing mass while maintaining stiffness. Rather, the study highlights the potential benefits of exploring a wider range of perforation unit cells during the design process. The study revealed that rectangular perforation patterns had the lowest efficiency in terms of modal stiffness, while triangular patterns resulted in the highest efficiency. These results suggest that there may be significant gains to be made by considering a broader range of perforation shapes and configurations in the design of lightweight structures.