• Title/Summary/Keyword: Isocyanate prepolymer

Search Result 19, Processing Time 0.024 seconds

A Study on Curing Rate of Non-Yellowing Type Acrylic Urethane Resins (무황변 Acrylic Urethane수지의 경화속도에 대한 연구)

  • Suh, C.S.;Park, T.W.
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.743-747
    • /
    • 1994
  • The catalytic effects of carboxylic acid and dibutyltin dilaurate(DBTL) on the curing rate of acrylic polyol with isocyanate prepolymer were investigated. In this work reaction of a biuret type aliphatic isocyanate with acrylic polyol follows the second order reaction in the thin film state. Carboxylic acid of acrylic polyol has a strong catalytic effect on the isocyanate groups and influences greatly on curing rate, also DBTL is more effective catalysis on acrylic polyol without carboxylic acid than with carboxylic acid.

  • PDF

Copolymerization of Organo Silane with Butoxyacrylamide Monomer and Its Physical Properties

  • Han, Jong Hee;Ko, Byeng In;Lee, Won-Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.128-134
    • /
    • 2019
  • Many scientific approaches have been developed for the preparation of alternative crosslinker system of amino resins and isocyanate prepolymers. Herein, copolymerization of trimethoxy silane with N-butoxymethyl acrylamide was performed, and the product was reacted with hydroxyl groups in the alkyl main chain without the need for an additional crosslinker. For the crosslinker synthesized herein, the molecular weight, glass transition temperature, and viscosity increased with increasing content of N-butoxymethyl acrylamide.

Preparation and Properties of Polyurethane Dispersions with Aromatic/Aliphatic Mixed Diisocyanate (방향족/지방족 혼합 Diisocyanate를 포함하는 Polyurethane 분산체의 제조와 성질)

  • Kim, Hyoung Sug;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.258-265
    • /
    • 2009
  • An anionic polyurethane dispersions (PUDs) were synthesized from the poly (tetramethylene glycol) (PTMG, Mw = 2000 g/mol), mixed isocyanate of dicyclohexylmethane-4,4'-diisocyanate $(H_{12}-MDI)$ and 4,4'-diphenylmethane diisocyanate (MDI), and dimethylol propionic acid (DMPA) as anionic site, following a prepolymer mixing process. Triethylamine (TEA) was used as a neutralization agent and the ethylenediamine (EDA) as the chain extender of the prepolymer. The effects of the DMPA molar ratio and aromatic diisocyanate content in the mixed isocyanate on the particle size and viscosity of PUD were studied. Also, the mechanical and thermal properties of the PUD cast films were discussed according to the molar ratio of DMPA and aromatic isocyanate content. It was found that the particle size and the viscosity of an anionic PUD decreased with increasing DMPA molar ratio but increased with increasing aromatic isocyanate (MDI) content in the mixed isocyanate at the constant DMPA content. Tensile strength of the PUD cast films increased and elongation at break decreased with increasing DMPA content at the constant mixed isocyanate molar ratios. In thermal degradation temperature of PUD cast films, the effect of DMPA contents was great but the effect of aromatic isocyanate contents at the low DMPA content was very slight respectively.

Effects of Blending Fatty Acid-Glycerol-pMDI with Urea-Formaldehyde Resin Adhesives to Their Adhesion for the Use of Soybean Oil (콩기름 이용을 위한 지방산-글리세롤-pMDI와 요소수지 혼용 접착제가 접착성능에 미치는 영향-)

  • You, Young-Sam;Choi, Jin-Lim;Seo, Jun-Won;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.31-36
    • /
    • 2006
  • This study was conducted to improve the bond strength of plywood bonded with F/U molar ratio urea-formaldehyde (UF) resins modified with the selected FGMDI prepolymer contents for various purposes. The amount of FGMDI was mixed with liquid UF resin at 0 wt% (as control), 2 wt%, 5 wt%, 10 wt%, 25 wt%, and 50 wt% based on the resin solids. As results, in bonding strength, plywood with F/U molar ratio of 1.4 showed the highest value in Type 2 test and all molar ratio UF resins modified with over 25 wt% of the FGMDI showed more than $11kgf/cm^2$, which was satisfied the minimum requirement of KS standard, $7.5kgf/cm^2$, after Type1.5 testing. As F/U molar ratio was increased and the FGMDI addition in the UF resin was increased, average reduction rate of Type 1.5 bonding strength compared with Type 2 was significantly decreased.

Curing Kinetics of TDI/PTMEG-based Urethane Prepolymers Depending on the Amount of Curing Agent and Curing Temperatures by DSC and Real Time FT-IR Spectroscopy

  • Kim, Se Mi;Park, Hee Jung;Kim, Seon Hong;Lee, Eun Ju;Lee, Kee Yoon
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.266-271
    • /
    • 2017
  • This study describes the influence of the amount of curing agent and curing temperature on the kinetics of polyurethane elastomers. The urethane prepolymer series was prepared by reacting toluene diisocyanate with polytetramethylene ether glycol at $80^{\circ}C$ for 1 h, and 4,4'-methylene bis(2-chloroaniline) was used as the curing agent. The ratio of the amine group of the curing agent to the isocyanate group of the urethane prepolymer was controlled from 0.85 to 1.05 at curing temperatures ranging from 80 to $120^{\circ}C$. The curing rate of the urethane prepolymer was monitored by observing the change in heat flow during the curing process using differential scanning calorimetry (DSC). As either the content of curing agent or the curing temperature was higher, the conversion rate to the polyurethane elastomer was high. The DSC results were compared with those obtained from using real-time FT-IR.

A Study on Reaction Kinetics of PTMG/TDI Prepolymer with MOCA by Non-Isothermal DSC

  • Ahn, WonSool;Eom, Seong-Ho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.92-97
    • /
    • 2015
  • A study on reaction kinetics for a PTMG/TDI prepolymer with 2,2'-dichloro-4,4'-methylenedianiline (MOCA), of which formulations may be generally used for fabricating high performance polyurethane elastomers, was peformed using non-isothermal differential scanning calorimetry (DSC). A number of thermograms were obtained at several constant heating rates, and analysed using Flynn-Wall-Ozawa (FWO) isoconversional method for activation energy, $E_a$ and extended-Avrami equation for reaction order, n. Urea formation reaction of the present system was observed to occur through the simple exothermic reaction process in the temperature range of $100{\sim}130^{\circ}C$ for the heating rate of $3{\sim}7^{\circ}C/min$. and could be well-fitted with generalized sigmoid function. Though activation energy was nearly constant as $53.0{\pm}0.5kJ/mol$, it tended to increase a little at initial stage, but it decreases at later stage by the transformation into diffusion-controlled reaction due to the increased viscosity. Reaction order was evaluated as about 2.8, which was somewhat higher than the generally well-known $2^{nd}$ order values for the various urea reactions. Both the reaction order and reaction rate explicitly increased with temperature, which was considered as the indication of occurring the side reactions such as allophanate or biuret formation.

Oil Gelling Agents made from Polyurethane by One-Shot Method (One-Shot법을 이용한 폴리우레탄계 유겔화제의 특성)

  • Kim, Dongsung;Kim, Wonho
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Polyurethane NCO prepolymers were synthesized with the polyols such as PTMG, GP and the isocyanate such as TDI at $40^{\circ}C$ for 8.5 minutes. As average molecular weights (${\bar{M_n}}$: 1000, 2000, 3000, 4000) of PTMG, and GP were decreased from 4000 to 1000, ratio of oil gelation increased from 298%, to 440%, for Bunker B. When oil and water were emulsified, the ratio of gelation was increased approximately two times. Ratio of gelation for emulsive Bunker B was increased from 402% to 910%, for PTMG1000 and increased from 440%, W 958% for GPI1000. Ratio of oil gelation for emulsive Bunk C which has higher viscosity than Bunker B was measured w 923% for PTMG1000 made with chain extender, i.e. EG, and measured to 1098% for GP1000. The gel made from GP which has three functional group showed soft and strong characteristic, as a result, it can be removed easily from oil spilled ocean.

  • PDF

Effect of Process Parameters on Residual NCO and Viscosity of Pre-Polymers (Pre-Polymer의 제조에서 공정변수가 잔류 NCO 및 점도에 미치는 영향)

  • Kim, Sang-Oh;You, Man-Hee;Ha, Man-Kyung;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.61-66
    • /
    • 2008
  • For the production of urethane prepolymer, the effect of process parameters such as diisocyanate MDI and polyol TDI was tested. In this paper, design of experiments has been adopted for studying the effect of the process parameters on the improvement of NCO and viscosity of pre-polymer. As a result of comparison of different parameters, the effect of polyol was stronger than that of isocyanate in comparison of reactivity according to the amounts of isocyanate and polyol. Especially, NCO and viscosity of pre-polymer affected a product safety.

  • PDF

Synthesis and Characteristics of PU Oil-Gelling Agents According to the Soft Segment Content (Soft Segment 조성에 따른 PU 유겔화제의 합성 및 특성)

  • Lee, Yong-Hun;Kim, Wook;Kim, Won-Ho
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.744-750
    • /
    • 2000
  • Oil gelling agent was synthesized with PPG, PTMG and TDI at 7$0^{\circ}C$ for 4hours. PPGs and PTMGs having various average molecular weights (M$_{n}$: 1000, 2000, 3000) were employed to investigate the ratio of oil gelation and water gelation. As M$_{n}$ of PPG, in result, was decreased from 3000 to 1000, the ratio of oil gelation was increased from 130% to 290% for PPG and from 250% to 310% for PTMG. Ratio of oil gelation was increased approximately two times when EG was added. As the amount of hydrophilic compound in the prepolymer was increased, ratio of oil gelation was increased from 290% to 1120% for PPG and increased from 310% to 1310% for PTMG, due to the increased dispersion of prepolymer in the water/oil mixture.ure.

  • PDF

A Study on Synthesis and Properties of Polyurethane Dispersion Adhesives

  • Park, Dong Kyu;Kim, Chung Gi;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Polyurethane dispersion (PUD) polymers were synthesized by using polyether and polyester polyol. The effect of ionomeric centers, r(NCO / OH) values, chain extender process, and chain extender types on the adhesion properties was investigated. In the case of polyether-based PUD, the ionic center, r value, chain extension process and chain extender types were not adjusted even after adjustment. In the case of polyester-based PUD, when the ionic center content was more than 2.5%, the state of adhesive strength was $2.0kgf/cm^2$ or more. On the other hand, the initial adhesive strength was excellent at about $1kgf/cm^2$ when the ionic center content was over 3.5%. When the r value was 1.3 or more, it was found that the initial bonding strength and the state of bonding strength were excellent at about $1kgf/cm^2$ and $2.1kgf/cm^2$ or higher, respectively. An IR spectrum analysis of the synthesized PUD confirmed that PUD was composed of urethane based on the N-H characteristic peak at $3340cm^{-1}$ and the urethane characteristic peak at $1730cm^{-1}$. Moreover, the characteristic peaks of the isocyanate ($2260cm^{-1}$) used in the preparation of the prepolymer were not observed. As a result, the residual -NCO was not observed, and urethane was completely synthesized.