• 제목/요약/키워드: Islanded operation

검색결과 36건 처리시간 0.028초

마이크로그리드의 운전모드를 고려한 자동발전제어시스템 (Automatic Generation Control System for Operation Mode in Microgrid)

  • 박중성;이학주;채우규;김주용;조진태
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.928-936
    • /
    • 2012
  • The microgrid concept assumes a cluster of loads and microsources operating as a single controllable system that provides a new paradigm for defining the operation of distributed generation. This system can be operated as both grid-connected mode and islanded mode. In other words, the microgrid can be operated to meet their special need; such as economics in steady state and local reliability in islanded mode due to the grid fault. This paper presents the AGC (Automatic Generation Control) method for microgrid with EMS (Energy Management System).

독립운전 마이크로그리드의 능동형 동기 투입 제어에 관한 연구 (Study on the Dynamic Synchronizing Control of An Islanded Microgrid)

  • 조창희;전진홍;김종율;권순만;김성신
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1112-1121
    • /
    • 2011
  • A microgrid is an aggregation of multiple distributed generators (DGs) such as renewable energy sources, conventional generators, and energy storage systems that provide both electric power and thermal energy. Generally, a microgrid operates in parallel with the main grid. However, there are cases in which a microgrid operates in islanded mode, or in a disconnected state. Islanded microgrid can change its operational mode to grid-connected operation by reconnection to the grid, which is referred to as synchronization. Generally, a single machine simply synchronizes with the grid using a synchronizer. However, the synchronization of microgrid that operate with multiple DGs and loads cannot be controlled by a traditional synchronizer, but needs to control multiple generators and energy storage systems in a coordinated way. This is not a simple job, considering that a microgrid consists of various power electronics-based DGs as well as alternator-based generators that produce power together. This paper introduces the results of research examining an active synchronizing control system that consists of the network-based coordinated control of multiple DGs. Consequently, it provides the microgrid with a deterministic and reliable reconnection to the grid. The proposed method is verified by using the test cases with the experimental setup of a microgrid pilot plant.

마이크로그리드 환경에서 부하차단을 위한 다중 에이전트 시스템의 설계 및 구현 (Design and Implementation of Multi-Agent System for Load Shedding in Microgrid)

  • 임유진;김학만
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제1권3호
    • /
    • pp.125-132
    • /
    • 2012
  • 마이크로그리드(microgrid)의 독립적 운용방식(islanded operation mode)에서는 전력 공급량과 전력 수요량 사이의 균형을 맞추기 위하여 부하차단(load shedding) 기법이 사용된다. 기존의 부하차단 기법들은 부하의 요구량이 연속적인 값의 범위를 갖는다고 가정하였다. 그러나 일부 부하는 이산적인 정수 값을 사용하여 자신의 요구량을 나타낸다. 따라서 본 논문에서는 독립형 운용방식 환경에서 부하 요구량의 이산적인 특성을 고려한 부하차단 기법을 다중 에이전트 시스템을 이용하여 설계한다. 또한 시스템 구조, 에이전트 기능, 그리고 에이전트 간 통신 프로토콜을 추가로 정의 및 확장함으로써 시스템을 구현하였으며, 구현된 시스템을 기반으로 다양한 시나리오 환경에서의 실험을 통하여 그 성능을 증명하였다.

Hybrid Control and Protection Scheme for Inverter Dominated Microgrids

  • Xu, Xiaotong;Wen, Huiqing;Jiang, Lin;Hu, Yihua
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.744-755
    • /
    • 2017
  • With the high penetration of various sustainable energy sources, the control and protection of Microgrids has become a challenging problem considering the inherent current limitation feature of inverter-based Distributed Generators (DGs) and the bidirectional power flow in Microgrids. In this paper, a hybrid control and protection scheme is proposed, which combines the traditional inverse-time overcurrent protection with the biased differential protection for different feeders with different kinds of loads. It naturally accommodates various control strategies such as P-Q control and V-f control. The parameter settings of the protection scheme are analyzed and calculated through a fast Fourier transform algorithm, and the stability of the control strategy is discussed by building a small signal model in MATLAB. Different operation modes such as the grid-connected mode, the islanding mode, and the transitions between these two modes are ensured. A Microgrid model is established in PSCAD and the analysis results show that a Microgrid system can be effectively protected against different faults such as the single phase to ground and the three phase faults in both the grid-connected and islanded operation modes.

Elimination of the State-of-Charge Errors for Distributed Battery Energy Storage Devices in Islanded Droop-controlled Microgrids

  • Wang, Weixin;Wu, Fengjiang;Zhao, Ke;Sun, Li;Duan, Jiandong;Sun, Dongyang
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1105-1118
    • /
    • 2015
  • Battery energy storage devices (ESDs) have become more and more commonplace to maintain the stability of islanded power systems. Considering the limitation in inverter capacity and the requirement of flexibility in the ESD, the droop control was implemented in paralleled ESDs for higher capacity and autonomous operation. Under the conventional droop control, state-of-charge (SoC) errors between paralleled ESDs is inevitable in the discharging operation. Thus, some ESDs cease operation earlier than expected. This paper proposes an adaptive accelerating parameter to improve the performance of the SoC error eliminating droop controller under the constraints of a microgrid. The SoC of a battery ESD is employed in the active power droop coefficient, which could eliminate the SoC error during the discharging process. In addition, to expedite the process of SoC error elimination, an adaptive accelerating parameter is dedicated to weaken the adverse effect of the constraints due to the requirement of the system running. Moreover, the stability and feasibility of the proposed control strategy are confirmed by small-signal analysis. The effectiveness of the control scheme is validated by simulation and experiment results.

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.

Utilization of Energy Storage System based on the Assessment of Area of Severity in Islanded Microgrid

  • Lee, Kyebyung;Yoon, Minhan;Park, Chang-Hyun;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.569-575
    • /
    • 2017
  • This paper proposes a method to utilize an energy storage system (ESS) based on the assessment of an area of severity (AOS) to voltage sag. The AOS is defined as a set of the fault positions that can cause voltage sags at many buses simultaneously. The assessment of AOS helps to determine an optimal location of ESS installation to minimize the expected sag frequency (ESF) at concerned buses. The ESS has the ability not only to play traditionally known roles but also to mitigate voltage sag impact on renewable energy sources (RES) in the islanded microgrid. Accordingly, using the proposed method the ESS has additional features to prevent the operation failure of RESs and improve the stability of the microgrid. In order to verify the presented method, a case study was conducted on the sample microgrid system that is modified from an IEEE 57-bus system.

다수 BESS의 SOC Balancing을 고려한 퍼지 드룹 제어 (Fuzzy Droop Control considering SOC Balancing of BESSs)

  • 한성근;유형준;김학만
    • 전기학회논문지
    • /
    • 제64권4호
    • /
    • pp.616-622
    • /
    • 2015
  • A microgrid which is composed of distributed generation systems, energy storage systems and loads is operated in the grid-connected mode and in the islanded mode. Especially, in the islanded mode, a microgrid should maintain frequency in the allowed range. The frequency is decided by a balance between power supply and power demand. In general, the frequency is controlled by using battery energy storage systems (BESSs) in the microgrid. Especially, droop control is applied to controlling BESSs in the microgrid. Meanwhile, over-charging and deep-discharging of BESS in operation and control cause life-shortening of batteries. In this paper, a fuzzy droop control is proposed to change droop gains adaptively by considering state of charge (SOC) of BESSs to improve the life cycle of the battery. The proposed fuzzy droop control adjusts droop gains based on SOC of BESSs in real time. In other to show the performance of the proposed fuzzy droop control, simulation based on Matlab/Simulink is performed. In addition, comparison of the convention droop control and the proposed fuzzy droop control is also performed.

Seamless Mode Transfer of Utility Interactive Inverters Based on Indirect Current Control

  • Lim, Kyungbae;Song, Injong;Choi, Jaeho;Yoo, Hyeong-Jun;Kim, Hak-Man
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.254-264
    • /
    • 2019
  • This paper proposes an indirect current control technique based on a proportional resonant (PR) approach for the seamless mode transfer of utility interactive inverters. Direct-current and voltage hybrid control methods have been used for inverter control under grid-connected and islanded modes. A large bandwidth can be selected due to the structure of single-loop control. However, this results in poor dynamic transients due to sudden changes of the controller during mode changes. Therefore, inverter control based on indirect current is proposed to improve the dynamic transients by consistently controlling the output voltage under all of the operation modes. A PR-based indirect current control topology is used in this study to maintain the load voltage quality under all of the modes. The design processes of the PR-based triple loop are analyzed in detail while considering the system stability and dynamic transients. The mode transfer techniques are described in detail for both sudden unintentional islanding and islanded mode voltage quality improvements. In addition, they are described using the proposed indirect control structure. The proposed method is verified by the PSiM simulations and laboratory-scale VDER-HILS experiments.

마이크로그리드에의 적용을 위한 에너지 저장장치의 관리 (Management of the Energy Storage System for a microgrid)

  • 김성현;이계병;손광명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.505_506
    • /
    • 2009
  • This paper presents effective operation methods for the battery energy storage applied to a microgrid. In an islanded microgrid, energy storage is needed to satisfy an energy balance between generation and consumption. The microgrid can be classified according to the ratio of the sensitive load and renewable energy source in the microgrid. For effective management of the battery energy storage, based on the classified microgrid, suitable operation methods for the battery energy storage system are provided from well-known battery applications.

  • PDF